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The Doctoral Thesis “Multispectral Imaging for the Analysis of Materials
and Pathologies in Civil Engineering, Constructions and Natural
Spaces”, presented by Susana del Pozo Aguilera, is part of the research
line entitled “Radiometric analysis of images to study different land
covers by optical remote sensing systems” in which by using different
active and passive sensors as conventional and multispectral cameras,
different terrestrial laser systems or even their combination; different
materials and pathologies regarding disciplines as civil engineering,
cultural heritage and natural resources have been analysed.

Remote sensing is an invaluable tool when direct measurements are
difficult or impossible to perform and lack of knowledge will result in
costly expenditures, long delays or even wrong decisions. The evolution
of optical remote sensing over the past few decades has enabled the
availability of rich spatial, spectral and temporal information to remote
sensing analysts without forgetting its non-invasive and non-destructive
character. In this way, the present Thesis is framed within close-range
imagery conducted by airborne and terrestrial-based platforms to
accurately image different land surfaces with high resolution. It includes
techniques to hybridise remotely sensed imagery acquired simultaneously
from active and passive sensing modalities for a joint radiometric-
geometric analysis to support decision making processes. With the
advances in sensor technology and the increasing quantity of multi-
sensor, multi-temporal, and multi-data from different sources, data fusion
has become as a valuable tool in remote sensing applications.




Multispectral imaging for the analysis of materials and pathologies in civil engineering,
constructions and natural spaces

Optical remote sensing focuses on the range from visible to near infrared
light. Remote sensing systems used for imaging purposes in this spectral
range are mostly passive systems, detecting the solar radiation reflected
or transmitted by objects on Earth. But in this case, the contribution of
the intensity data collected by active systems (terrestrial laser scanners)
give an added value to the radiometric data from conventional passive
sensors. This research line is not trendy or novel in the fields of
Geomatics because it is a well-established technique that has long been
used form many years, especially in the case of satellite observations.
However, it offers a great scientific contribution in the close-range
remote sensing area as it deals very rigorously, by using an in-house
software developed for this purpose, the vicarious radiometric calibration
of sensors, the data acquisition and its main common problems, the
sensor and data fusion, potentials and limitations of several sensors and
wavelengths regarding the field of application, the analysis of data and
the extraction of valuable final products.

It is a line of research promoted and developed by the TIDOP Research
Group (http://tidop.usal.es/) of the University of Salamanca, which is
researching and developing software and hardware tools within
competitive projects and in collaboration with other research groups and
leading companies at national and international level. Specifically, this
line is a topic of interest for the Department of Geoscience and Remote
Sensing of the Faculty of Civil Engineering and Geosciences of the Delft
University of Technology. They were interested in the application of a
low-cost multispectral camera to the field of geology. As a result, Susana
del Pozo Aguilera conducted a 3-months research stay at the Department
in Delft (The Netherlands) under the supervision of Dr. Roderik
Lindenbergh, which culminated with a high impact publication and give
rise the third chapter of the Thesis.

The new scientific contributions and the valuable results obtained led to
the publication of various scientific articles, all currently published in
prestigious journals in the field of remote sensing, civil engineering and
instrumentation, subject to anonymous peer review and indexed in
databases Journal Citation Report (JCR), being in the top quartile (Q1) of
their category. It is noteworthy that the results derived an intellectual
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property and a technical book chapter which highlight the research,
implementation and knowledge transfer capabilities of Susana del Pozo
Aguilera.

The Doctoral Thesis is completed with a proper section of conclusions
and future perspectives in which, the major contributions and
recommendations for future works are precisely specified in order to
complement this work being fully integrated into the line of research.
Accordingly, this Thesis brings the cutting edge in signal processing and
exploitation research closer to users and developers of remote sensing
technology and it would be a valuable reference to graduate students and
researchers in the academia and the industry who are interested in
keeping abreast with the current state-of-the-art in signal and image
processing techniques for optical remote sensing.

Given the conditions put forward, the supervisors consider that the
present Doctoral Thesis is suitable for submission and public defence in
the form of “Compendium of Publications” and with “International
Mention” since it presents more than sufficient original results according
to the requirements and regulations established by the University of
Salamanca in this regard. In witness whereof, this certificate has been
signed at

Avila, 10 February 2016,

Dr. Diego Gonzélez Aguilera Dr. Pablo Rodriguez Gonzélvez

Vil
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Two assessment reports written by Doctors of a non-Spanish Institution are
attached below
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EVALUATION LETTER OF THE DOCTORAL THESIS WITH THE “INTERNATIONAL MENTION”
FORM ORGANIZED AS A COMPENDIUM OF SCIENTIFIC PAPERS

Delft
e t University of
Technology

Dr. Tim Vlemmix

Department of Geoscience & Remote Sensing
Faculty of Civil Engineering and Geosciences
Stevinweg 1, 2628 CN, Delft, the Netherlands
t.vlemmix@tudelft.nl

+31 1527 83417
21 January 2016
Subject: Thesis Review

To whom it may concern,

With great pleasure | have been reading the PhD dissertation Multispectral Imaging for the
Analysis of Materials and Pathologies in Civil Engineering, Constructions and Natural Spaces
written by Susana del Pozo Aguilera (University of Salamanca, Department of Cartographic and
Land Engineering). Before evaluating, | will summarize shortly the content of this work.

The thesis opens with an introductory chapter describing the principles of remote sensing and
different type of sensors. Also the principles of radiometric calibration are discussed as well as
techniques for multispectral data analysis (supervised and unsupervised classification). The
remainder of the introductory chapter describes the motivation and objectives for this work,
namely to develop a vicarious radiometric calibration protocol in order to allow synergistic use
of multiple sensors in a wide range of application areas (e.g. environmental monitoring,
cultural heritage monitoring).

The development and results of the calibration method are described in the second chapter.
The authors developed their own software package (MULRACS) for this purpose, and this
software is also made publicly available. Methods are tested on field measurements using an
unmanned aerial system flying at low altitude over natural terrain where artificial targets (low
cost vinyl sheets) with well-known spectral properties were added. The low error w.r.t. the
final calibration factors demonstrates the successfulness of the developed workflow.

The third chapter is about an application in the field of geology and describes methods to
discriminate between sedimentary rocks using two different data types: close-range visible
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1d very-near infrared images. Observations were performed in the Rhone-Alpes region in
ance. Like in the previous part of the study, a reference panel was used to correct for the
irying solar irradiance (effectively a correction for atmospheric modification of the solar
-adiance). It was concluded that two types of rock can be discriminated using the
ultispectral camera: limestone and marlstone. Discrimination between limestone and
indstone is remains a challenge. Cloudy days are favourable for this type of analysis because
‘fewer issues with shadowing. In future studies information about the BRDF of this type of
ick would enhance the potential of this technique.

1apter four describes a study devoted to quite a different field of application: detection and
J1antification of physical and chemical pathologies in facades of cultural heritage. In addition
1the multispectral camera, a laser scanning system is used (essentially the primary
strument used in this study because of several advantages related to active remote sensing).
fferent classification algorithms are compared (Fuzzy K-means clustering and maximum
:elihood). A spectroradiometer was used for validation. One of the main conclusions is that
iding intensity information to multispectral information improves classification both
1alitatively and quantitatively. Another section of chapter four focuses on the mapping of
irface moisture affectation in concrete structures. Chapter four concludes with a chapter
ritten for a textbook on Geotechnologies for the Reverse Engineering of Structures and
frastructures. This informs readers about, amongst others, using remote sensing
strumentation for efficient and cost effective damage assessments and the added value of
ultispectral systems.

together the work described in this thesis is very complete in the sense that the PhD
indidate has been working with various sensors (active and passive), performed both
boratory experiments and various types of fieldwork, developed and used a range of
ftware packages and did this in quite different fields of application (geology, cultural
aritage, structural engineering). These activities have been executed with considerable
Iccess, as described in this thesis. The study has lead to convincing conclusions and
:commendations for future work, mostly from an instrumental perspective. In addition the
iesis has a clear structure and is very well written in the English language. This is also proven
/ the fact that the three main chapters are either published or accepted for final publication
peer-reviewed journals. Therefore | strongly recommend Susana del Pozo Aguilera to obtain
ie degree of International Doctor at the University of Salamanca in Spain and | would like to
yngratulate both her and her supervisors with this work.

'ith friendly greetings,

. Tim Vlemmix
apartment of Geoscience & Remote Sensing

alft University of Technology
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Optical radiant energy has always been the connecting link between the
human visual system and the external world, and energy from the sun has
always been essential to biological growth and development.

(Grum, 2012)






Abstract

Abstract

Multispectral imaging is a non-destructive technique that combines
imaging and spectroscopy to analyse the spectral behaviour of materials
and land covers through the use of geospatial sensors. These sensors
collect both spatial and spectral information for a given scenario and a
spectral range, so that, their graphical representation elements (pixels or
points) store the spectral properties of the radiation reflected by the
material sample or land cover. The term multispectral imaging is
commonly associated with satellite imaging, but the application range
extends to other scales as close-range photogrammetry through the use of
sensors on board of airborne systems (gliders, trikes, drones, etc.) or
through their use at ground level. Its usefulness has been proved in a
variety of disciplines from topography, geology, atmospheric science to
forestry or agriculture. The present thesis is framed within close-range
remote sensing applied to the civil engineering, cultural heritage and
natural resources fields via multispectral image analysis.

Specifically, the main goal of this research work is to study and analyse
the radiometric behaviour of different natural and artificial covers by
combining several sensors recording data in the visible and infrared
ranges of the spectrum. The research lines have not been limited to the
2D data analysis, but in some cases 3D intensity data have been
integrated with 2D data from active (terrestrial laser scanners) and
passive (multispectral digital cameras) sensors in order to analyse
different materials and possible associated pathologies, getting more
comprehensive products due to the metric that 3D brings to 2D data.

Works began with the radiometric calibration of the active and passive
sensors used by the vicarious calibration method. The calibrations were
carried out through MULRACS, a multispectral radiometric calibration
software developed for this purpose (see Appendix B). After the
calibration process, active and passive sensors were used together for the
discretization of sedimentary rocks and detecting pathologies, as
moisture, in facades and in civil structures. Finally, the Doctoral Thesis

xxi
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concludes with a theoretical book chapter in which all the know-how and
expertise arising during this research stage have been compiled.
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Resumen

Resumen

Las imagenes multiespectrales se constituyen como técnica no
destructiva que combina imagen y espectroscopia para analizar el
comportamiento espectral de distintos materiales y superficies terrestres a
través del uso de sensores geoespaciales. Estos sensores adquieren tanto
informacion espacial como espectral para un escenario y un rango
espectral dados de tal forma sus unidades de representacion grafica (ya
sean pixeles o puntos) registran las propiedades de la radiacion reflejada
para cada material o cobertura a estudiar y longitud de onda. Las
imagenes multiespectrales no solo se limitan a las observaciones
satelitales a las que tradicionalmente se vinculan, sino que tienen un
campo de aplicacion mas amplio gracias a los estudios de rango cercano
realizados a través del uso de sensores tanto embarcados en sistemas
aéreos (planeadores, paramotores, drones, etc.) como a nivel terreno. Su
utilidad ha sido demostrada en multitud de disciplinas; desde la
topografia, geologia, aerologia, hasta la ingenieria forestal o la
agricultura entre otros. La presente tesis se enmarca dentro de la
teledeteccion de rango cercano aplicada a la ingenieria civil, el
patrimonio cultural y los recursos naturales a través del andlisis
multiespectral de imagenes.

Concretamente, el principal objetivo de este trabajo de investigacion
consiste en el estudio y andlisis del comportamiento radiométrico de
distintas coberturas naturales y artificiales mediante el uso combinado de
distintos sensores que registran informacion espectral en los rangos
visible e infrarrojo del espectro electromagnético. Las lineas de
investigacion no se han limitado al analisis de datos bidimensionales
(iméagenes) sino que en algunos casos se han integrado datos de
intensidad registrados en 3D a través de sensores activos (laser escaner
terrestres) con datos 2D capturados con sensores pasivos (camaras
digitales convencionales y multiespectrales) con el objetivo de analizar
diferentes materiales y posibles patologias asociadas a los mismos
ofreciendo resultados mas completos gracias a la métrica que los datos
3D aportan a los datos 2D.
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Los trabajos comenzaron con la calibracion radiométrica de los sensores
por el método de calibracion vicario. Las calibraciones fueron resueltas
gracias al uso del software MULRACS, un software para la calibracion
radiométrica multiespectral desarrollado durante este periodo para tal fin
(ver Apéndice B). Tras el proceso de calibracion, se combiné el uso de
sensores activos y pasivos para la diferenciacion de distintos tipos de
rocas sedimentarias y la deteccién de patologias, como humedades, en
fachadas de edificios historicos y en estructuras de ingenieria civil.
Finalmente, la Tesis Doctoral concluye con un capitulo teérico de libro
en el cual se recopilan todos los conocimientos y experiencias adquiridos
durante este periodo de investigacion.
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1. INTRODUCTION

Multispectral imaging is a non-destructive technique through which
isolated spectral information from different land covers is remotely
acquired through the use of: (i) sensors sensitive to several wavelengths
(Zhang et al., 2006) or (ii) different sensors at the same time. This is
possible by analysing the radiometric response of each material captured
by the particular wavelength(s) of the sensor(s) applied. The term
radiometry covers several topics, from the basics of radiant flux, energy
and its transfer to the instrument calibration to enable its application in
different fields (Grum, 2012). The purpose of this Doctoral Thesis is to
cover all these issues evenly, focusing on sensor fusion to extend the
scope that a single sensor could offer and, thus, conducting more
comprehensive studies. In this way, the multispectral imaging is used as a
non-destructive alternative to expeditious methods for inspection tasks in
the fields of civil engineering, cultural heritage and natural resources.

This multispectral technique is based on the interaction of energy with
each material or land cover surface. Specifically, it focuses on the study
of the proportion of energy reflected by each surface for each wavelength
of the spectrum, that is, the study of the spectral signature. The spectral
signature gives materials a unique identity (Shaw and Burke, 2003) and
therefore any variation therein can mean any chemical or mechanical
alteration of such cover.

Multispectral images have been traditionally associated with satellite
images since the Earth has been observed in these terms since 1960
(Davis, 2007) at different spatial, temporal and spectral resolutions by
sensors installed in satellites. Thanks to these images it is possible to
conduct studies ranging from the natural resources to the climate system
and its changes. Its great advantage lies in the potential to provide global
observations on a large set of land covers (Justice et al., 2002;
Bartholomé and Belward, 2005). While today satellite images are still
very important to make certain global studies, multispectral images are
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not only covering satellite observations but also are successfully used for
land thematic studies that require higher resolution and shorter range.
Both are reached through the use of airborne or ground-based platforms
(Knoth et al., 2013; Brooke, 1989).

This is the starting point of the research: the multispectral remote sensing
study of different land covers and materials within a closer range of
distance by using aerial systems and ground-based platforms to provide
solutions to different fields via new geotecnologies. Throughout the
development of this Doctoral Thesis, there is a clear commitment to the
fusion and integration of spectral data from different sensors to get more
and higher quality information than that derived from the use of a single
sensor (Pohlc, 1998).

The aim of this chapter is to provide an introduction to this Doctoral
Thesis. During its development the context, scope, motivation, objectives
and structure of the research work will be discussed.

1.1. Theoretical background

1.1.1. Overview and fundamentals of remote sensing

When an object receives radiation emitted by the sun or other bodies,
depending on the type of object we are considering, the radiation can
follow three ways: being reflected, absorbed or transmitted (Joseph,
2005). The fraction of energy reflected is called reflectivity or albedo (p);
the fraction of energy absorbed is called absorptivity () and the fraction
of energy transmitted is called transmissivity (7). They hold the energy
conservation equation (Equation 1):

pra+r=1 (1)

By studying this radiation behaviour through remote sensing it is possible
to derive physical and chemical conclusions of the state of covers. The
term remote sensing has been variously defined depending of the
purposes. The following (Davis et al., 1978) gives a general definition
that is in line with the development and applications of the present
Doctoral Thesis:
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“Remote sensing is the science of deriving information about
an object from measurements made at a distance from the
object, i.e., without actually coming in contact with it. The
quantity most frequently measured in present-day remote
sensing systems is the electromagnetic energy reflecting from
objects of interest”

There are two different remote sensing acquisition techniques: the
passive and the active methods (Barret, 2013). Both are equally
important and powerful and offer different functional tools. Passive
remote sensing employs sensors that measure radiation naturally
reflected or emitted from the objects. The visible, near infrared and short
wave infrared regions (from 0.4 um to about 3 um) are the solar-
reflective spectral range because the energy supplied by the sun at the
Earth’s surface exceeds that emitted by the earth itself (Schowengerdt,
2006). Active remote sensing for its part employs an artificial source of
radiation as a probe and the resulting signal that scatters back to the
sensor characterises the object. Active sensors do not portray the results
in image format so to conduct studies through the fusion of both
techniques (active and passive remote sensing) rigorous processing and
registration of data must be conducted.

1.1.2. Sensors

Sensors used in remote sensing convert the incoming radiation into a
signal whose output is, in digital format, proportional to the radiance
spatial distribution. Some transformations regarding spatial, radiometric,
and geometric characteristics of the radiance occur at this point. It is
important to study these alterations to properly design data processing
algorithms and interpret their results (Schowengerdt, 2006). Detectors
used for optical remote sensing (visible, near infrared and short wave
infrared) are quantum detectors constructed of semiconductor materials
(Richtmeyer et al., 1968). They convert the incoming radiance into an
electronic signal which is amplified and further processed by the sensor
electronics. At the analog-to-digital (A/D) converter, the processed signal
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is sampled and quantized into digital levels' representing the spatial
image pixels depending on the radiometric resolution of the sensor.

Remote sensing systems have also resolution in the spatial, spectral and
temporal measurement domains (Parr et al., 2005). The radiometric
resolution is the numerical resolution associated with the data itself by
radiance quantization. The spatial resolution refers to the size of the
smallest possible feature that can be detected. The least depend primarily
of the distance between the object being studied and the sensor and the
field of view. The spectral resolution is the sensitivity of a sensor to
respond to a specific frequency electromagnetic range. Multispectral
sensors are those systems that are capable to record energy over several
separate wavelength ranges at various spectral resolutions. And finally,
the concept of temporal resolution refers to the time interval between
data acquisitions.

In the particular case of multispectral images, sensors use multi-lenses
systems with different filter combinations to acquire images
simultaneously for its spectral ranges. They have the advantage of
recording reflected energy in discrete wavelength ranges but
simultaneous analysis of these multiple images can be problematic
(Colwell, 1961) as it will be shown during the Doctoral Thesis research.

1.1.3. Radiometric calibration of sensors

Before describing the radiometric calibration process, some spectral
imaging concepts should be introduced. lrradiance (E) refers to the light
energy per unit time impinging on a surface typically measured in W/m2.
Reflectance (p) is a dimensionless number between 0 and 1 commonly
expressed as a percentage that characterises the fraction of incident light
reflected by a surface. Reflectance may be further qualified by
parameters such as the wavelength of reflected light, the angle of
incidence and the angle of reflection. Radiance (L) is an important
related concept that does not distinguish between the light illuminating a
surface and the light reflected from it. Radiance is simply the irradiance
normalized by the solid angle (in steradians) of the observation on the

' 2 digital levels where b is the radiometric resolution of the sensor measured in bits.
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direction of propagation of the light, and it is typically measured in
W/m2esr. Normalizing the radiance by the wavelength of the light, which
is typically specified in microns (um), yields spectral radiance, with
units of W/m2esreum. Equation 2 shows the relationship between these
radiometric concepts.

p=rior @)

While remote sensing data in digital levels can be used in many image
analysis tasks without needing further processing (Robinove, 1982), this
methodology does not take the full advantage of the possibilities that a
calibration process open to it. The digital numbers of pixels should be
converted to their corresponding physical value (radiance or reflectance)
to perform multisensory data fusion and better analysis. At-sensor
physical values may be calculated with the use of appropriate sensor
radiometric calibration coefficients (Dinguirard and Slater, 1999). In the
field of remote sensing, there are two common radiometric calibration
methods: the absolute and the relative calibration (Lo and Yang, 1998).
On the one hand, absolute radiometric calibration determines for each
spectral band of the sensor parameters that are needed to transform the
digital levels into physic values. Typically, a linear model with gain and
offset parameters is appropriate for passive sensors (Richards and
Richards, 1999). On the other hand, relative radiometric calibration the
output of the sensor is normalised when the sensor is irradiated by a
uniform source of radiance. Absolute calibration can be performed
through the radiance-based or the reflectance-based method by ground-
based measurements using a spectroradiometer.

Well-known radiometric calibration approaches are laboratory, on-board,
vicarious and self-calibration (Honkavaara et al., 2009). The vicarious
calibration (Thorne et al., 1997) consists of a ground-reference
calibration over a selected test site based on radiative transfer code
calculations constrained by the measured of surface physical values
(radiances or reflectances) and atmospheric characteristics (Slater et al.,
1996). This ground measurements are determined using a calibrated
spectroradiometer.
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After the radiometric calibration of a sensor, data in physical values can
be derived so that, depending on the spectral resolution of the sensor,
isolated spectral information can be analysed as spectral signature or in
form of thematic images.

1.1.4. Multispectral analysis of data

The multispectral analysis of data basically consists of an image
classification used to identify and classify pixels with different
properties. Thus, if data from different sources is used, it must be
integrated before this stage in an effort to extract complementary
information. If data from active laser scanners is combined with data
from passive sensors, 3D intensity data from lasers must be converted
into images with the same radiometric and spatial resolution as images
recover by the passive sensors. So, before the classification process,
conducting  several geometric rectifications and radiometric
transformations are necessary.

The classification is usually performed on multi-band data sets where a
particular class is assigned to each pixel based on its radiometric and
spectral characteristics. The two generic approaches are the supervised
and the unsupervised classifications (Lillesand et al., 2014). In a
supervised classification, the analyst identifies representative samples of
pixels of the different cover types of interest (informational classes).
These samples are the training areas that collect the radiometric
information for the set of the spectral bands analysed (digital levels or
physical values, depending if the sensor is calibrated or not) and they are
used to train the classification algorithm and to recognise spectrally
similarities thanks to an implemented algorithm (Campbell, 2002).
Unsupervised classification (Jensen and Lulla, 1987) in essence reverses
the supervised classification process. Spectral classes are firstly grouped
based solely on the numerical information in the data. Clustering
algorithms determine the groups of data. Usually, the analyst specifies
the number of classes to be differentiated so this method is not
completely without human intervention. The final result of the iterative
clustering process may result in some clusters that the analyst will want
to combine or remove. These data have been useful for many
applications in order to conduct changes analysis of different covers.
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1.2. Motivation

There is no doubt that close-range multispectral imaging has experienced
a remarkable resurgence as a complement of satellite remote sensing
(Zhou et al., 2009) offering more spatial and temporal resolution studies
of terrestrial surfaces. While it is true that close-range multispectral
studies are long-established, exploring this technique from a low-cost
view assessing its potential, inherent errors and efficiency arising from its
radiometric calibration was one of the main purposes of this Doctoral
Thesis. For this reason, it was decided to establish the radiometric
calibration of a low-cost multispectral sensor on board an unmanned
aerial system as a starting point. The idea was to develop a
comprehensive and low-cost calibration protocol to model the
radiometric behaviour of the sensor taking into account the possible
atmospheric affectation to finally perform robust analysis of different
covers.

Since a calibration process is not complete until its performance is
evaluated in actual field conditions, it raises the need for assessing its
efficiency in different scenarios. Both aerial and ground-based
acquisitions in context that are a priori favorable, intermediate and
unfavorable were proposed to fully assess its potential and limitations in
this regard.

Finally, since any sensor has its own limitations derived from its
configuration and operating principle, the sensor fusion of devices with
different operating principles and spectral resolutions is planted as a
solution for unfavorable contexts where the calibrated multispectral
sensor is limited. The synergistic use of this calibrated sensor with other
passive and active sensors is proposed with the aim of extending the
range of the application areas. In this way, the final products would be
improved not only in radiometric terms but also in geometric terms
offering attractive products to the International Scientific Community.
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1.3. Objectives

In this context, the overall objective of the research is to provide further
multispectral analysis by developing a vicarious radiometric calibration

protocol to help in the sensor fusion process favouring rigorous analysis
for a wider variety of application areas.

To achieve this overall objective the following specific objectives have
been established:

To study in depth the laws, theories and concepts of radiometry
and implement them to radiometrically calibrate a low-cost
multispectral camera.

To study and correct the possible effects and systematic errors
that may be transmitted to the final images derived from the use
of low-cost sensors.

To discuss the possibility of using low-cost artificial targets in
order to radiometrically calibrate sensors.

To add several robust estimators and statistical tests to the
radiometric calibration process to validate the process.

To understand the importance that the concept of resolution has in
general to image analysis, and particularly spatial, temporal,
radiometric and spectral resolution for each specific case study.

To review the methods and procedures of the International
Scientific Community for multispectral image processing.

To automate the vicarious radiometric calibration and
multispectral data fusion processes to simplify the radiometric
analysis of images.

To analyse the potential and limitations of a multispectral sensor
after applying it to a non-appropriate case study.

40



Chapter I. Introduction

= To spectrally analyse different natural covers, as they are
presented in their natural state, by applying different image
classification algorithms.

» To radiometrically calibrate an active sensor (terrestrial laser
scanner) to analyse and contrast its spectral behaviour with regard
to passive sensors.

*» To analyse the improvements that radiometric calibration and
corrections provide to data processing and especially to the final
results for both active and passive sensors.

» To obtain successful sensor hybridizations as a solution for the
radiometric study of land covers whose spectral characterization
is typical of a very specific spectral range.

» To spectrally analyse the damage of building materials in
different scenarios, by applying sensor hybridization and image
classification algorithms.

1.4. Structure of the Doctoral Thesis

This Doctoral Thesis is presented in the form of "a compendium of
impact scientific articles" published in international journals in
accordance with the Doctoral Regulations of the University of
Salamanca. It consists of five scientific articles: four have been or are to
be published in international high impact journals and one as an
international book chapter. Its structure consists in total of five chapters
that follow a logical research order according to the objectives of the
Doctoral Thesis:

= Chapter I: Introduction.

= Chapter II: Vicarious radiometric calibration of a multispectral
Sensor.

= Chapter III: Multispectral imaging applied to geology.
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* Chapter IV: Sensor fusion applied to civil engineering and
cultural heritage.

* Chapter V: Conclusions and future work.

Furthermore, two additional appendices were considered appropriate.
Appendix A provides information about the impact factor of the journals
in which the papers have been published and Appendix B summarizes the
main features and options of the MULRACS software (intellectual
property registered SA-00/2015/4722) developed by the authors to
facilitate the radiometric calibration of passive sensors.

Details of the content of each chapter and the relationship between them
can be found below.

Chapter I: provides an overview of the current state of multispectral
image analysis ranging from the traditional view of remote sensing to the
ground-based studies, including aerial images taken by unmanned aerial
systems. It also establishes the overall objective and the specific
objectives of the research work and finally concludes with the
organization and structure followed by remaining chapters.

Chapter I1: acts as a framework for the remaining chapters as it solves
the radiometric calibration of the low-cost multispectral camera (the Mini
MCA-6, Tetracam®™) that will be used in the successive studies of the
Doctoral Thesis. The reason for the choice of this type of sensor, this
field of application, boarding it in an unmanned aerial vehicle and
performing a radiometric calibration; are justified in this chapter. To
conclude, it should be noted that the radiometric calibration process has
been conducted through the use of the MULRACS software (see
Appendix B) developed by the authors for this purpose.

Chapter I11: Motivated by performing a collaboration stay at the Delft
University of Technology (The Netherlands) and due to the interest
shown by its Department of Engineering and Geoscience for the
application of the multispectral camera Mini MCA-6 on the recognition
of rocks, it was decided to apply the calibrated camera (Chapter II) in this
field. Since the spectral characterizations of this land cover is not
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allocated to the range offered by this sensor, it was decided to applied it
and so analyse its potential and limitations in this regard.

Chapter 1V: Once the radiometric behaviour of the low-cost
multispectral camera is known and also its potential and limitations
arising from its application to various fields, this chapter is committed to
a sensor fusion as a tool to perform more comprehensive spectral analysis
applicable to a broader range of areas. Specifically, the fusion of the Mini
MCA-6 with other passive and active sensors is proposed in order to
deepen in the study of a wider range of operating systems and data
processing techniques as well as optimizing the final results. The aim is
to achieve an efficient tool for the spectral study of a wider variety of
surfaces.

In this case, and through the successive sections, the sensor fusion is
focused on the detection of moisture and other pathologies present in
civil and cultural heritage constructions.

IV.1: This section addresses the issue of sensor hybridization by
fusing two radiometrically calibrated sensors with different operating
principle, an active laser scanning and a passive multispectral camera.
Specifically, the images from the Mini MCA-6 multispectral camera
were combined with the intensity data from the Faro® FOCUS-3D
terrestrial laser scanner for the spectral documentation of the fagade
with presence of moisture. Thanks to the 3D geometry provided by the
laser scanner, it is possible to create true orthoimages so performing
quantitative analysis of the conditions of the facade was also possible.
Finally, the advantages and disadvantages arising from the use of each
sensor and wavelength to detect the main pathologies and the
difficulties of the hybridization process are pointed out.

IV.2: An automatic protocol for the detection and mapping moisture
in concrete structures is established in this section by capturing
spectral data from four different sensors, two active and two passive,
and data processing following a simplified analysis methodology. In
this case it has been decided to conduct a radiometric analysis of the
raw-digital data without applying any radiometric calibration in order
to study the feasibility of automating the moisture detection. Mapping
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products about the pathologies with metric properties are obtained
derived from several geometric transformations and thanks to the 3D
geometry provided by the active sensors. This makes quantitative
assessments about the different degrees of affectation possible.

IV.3: This section addresses the sensor fusion in a theoretical way
oriented to multispectral analysis of constructions for the detection of
possible pathologies. It presents the fundamentals, principles and
methods of data acquisition and data processing in this regard.

Chapter V: This final chapter provides a technical discussion based on
the results and conclusions reached through the development of the
Doctoral Thesis are carried out. Different open approaches towards the
continuity of this research line are also set.
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2. VICARIOUS RADIOMETRIC CALIBRATION
OF A MULTISPECTRAL SENSOR

This chapter contains the paper Vicarious radiometric calibration of a
multispectral camera on board an unmanned aerial system published in
the high impact journal Remote Sensing in February 2014.

2.1. Abstract

This paper describes the procedure followed to radiometrically calibrate a
low-cost multispectral camera (Mini MCA-6, Tetracam®™) on board an
unmanned aerial system to a very low flight height (30 meters). The
camera calibration and its subsequent validation were solved by applying
the vicarious radiance-based method (Slater et al., 1987) through the use
of MULRACS (Appendix B), software developed by the authors for this
purpose. The main objective was to determine the spectral response of
the camera, that is, find out the relationship between the input (radiation
reflected by each cover) and output data (digital levels). Once this
relationship is known, it is possible to use the multispectral camera for
analysing the radiometric behaviour of any land surface or material in
physical values, whether radiances or reflectances, instead of digital
levels.

The presented vicarious method requires: (1) a test area in which various
homogeneous and Lambertian surfaces of interest (natural and artificial)
are available, (i1) a spectroradiometer whose measurements serve as
ground truth and (iii) a simultaneous data acquisition between the camera
and the ground-based spectroradiometer. The spectroradiometer is the
element responsible to measure the radiation reflected (in this case in
radiance values, W-m™-sr'-nm™) by each surface of interest and for
multiple wavelengths according to its spectral resolution. For its parts,
the camera on board the unmanned aerial system captures, for each of its
six spectral bands, the radiation reflected by each surface. This signal can
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be disturbed by the gas absorption and scattering of suspended particles
in the atmosphere (Chan, 1960). That is why the knowledge of some
meteorological data at the time of the data acquisition (temperature,
optical thickness, water vapour, etc.) is important to eliminate any
alteration that a 30-m atmospheric column could produce in data. After
removing the atmospheric influence, data from the camera and the
spectroradiometer can be analysed as if both were taken at the same
height level. Thus, the spectral behaviour of each surface of interest is
compared with the digital levels provided by the camera for each spectral
band, finding the desired relationship between these two values and thus

estimating the radiometric calibration coefficients of the camera for each
band.

Since low-cost sensors often pass down systematic errors to the final
images, a handicap associated with this study was to analyse these errors
and correct them prior to the radiometric calibration process. For the
specific case of this camera, background and vignetting errors were
studied and corrected for each of its six bands. Finally, conclude that all
these aspects were implemented in the MULRACS software which
solves the radiometric calibration by the Danish iterative method
proposed by Krarup (Krarup et al., 1980).

The study served on the one hand, to validate the use of vinyl sheets and
canvas of different colours as low-cost calibration surfaces while some
natural surfaces (soil, dry straw and pines) were used as validation
surfaces. Note the high correlation obtained (mean error of 1.8%)
between the in-situ radiances and those obtained with the calibrated
camera for the pine grove as checking surface. On the other hand, and
after the assessment of the atmospheric influence through the 6S
radiative transfer model (the most widely used by the Scientific
Community in the field of remote sensing), it is concluded that to a 30-
meter flight height in a clear sky day the atmospheric influence is
negligible. All this leads to the possibility of analysing land covers with
limitations in data acquisition due to the point of view (forest cover or
some rock masses), so that an aerial data acquisition would be the most
suitable solution thanks of the high spatial and temporal resolution that
this system offers compared to satellite systems. Finally it is concluded
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that the MULRACS calibration software guarantees robustness in the
radiometric calibration process of passive sensors that is evidenced by
the good fit (R* = 0.98) obtained in the results.
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Abstract: Combinations of unmanned aerial platforms and multispectral sensors are
considered low-cost tools for detailed spatial and temporal studies addressing spectral
signatures, opening a broad range of applications in remote sensing. Thus, a key step in this
process is knowledge of multi-spectral sensor calibration parameters in order to identify the
physical variables collected by the sensor. This paper discusses the radiometric calibration
process by means of a vicarious method applied to a high-spatial resolution unmanned flight
using low-cost artificial and natural covers as control and check surfaces, respectively.

Keywords: radiometric calibration; vicarious method; multispectral camera; UAS;
low-cost targets; radiance; remote sensing

1. Introduction

Unmanned aerial systems (UASs) are gaining ground in the field of remote sensing as a new and
versatile tool for data acquisition. In this sense, the interest of the international scientific community in
them is steadily increasing. NASA has been a pioneer in the use of UASs, an example being
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agricultural resource monitoring, such as coffee crops [1,2], or the analysis of vineyard crop vigor
variables [3], among others.

In comparison with manned aircraft or satellite platforms, UASs provide unique advantages in the
data captured: their low operating height enables the generation of data at a very high spatial resolution
in small areas [4], up to 1 cm per pixel [5,6]. Furthermore, UAS platforms allow short revisit periods,
in contrast to satellite platforms, with their unfavorable orbital coverage patterns [7]. In addition, this
high temporal resolution in data capturing [8] and increased maneuverability allow remote data
acquisition in small inaccessible areas or in hazardous environments [9]. For these reasons, together
with their low operational costs, UASs are becoming a key tool to meet the requirements of satellite
imagery and aerial photography users.

The progress of microelectronics in the field of digital sensors, navigation equipment
(GNSS/IMU (Global Navigation Satellite System/inertial measurement unit)), along with the design of
small aircraft and light-weight materials, has reduced the cost of the fundamental components of
UASs [10]. Several authors have published works in which, using cameras on board small planes or
radio-controlled helicopters, they have demonstrated the viability of such airborne vehicles as image
acquisition platforms for scientific purposes [11-16]. With the increasing availability of commercial,
low-cost components, research groups now have the option to develop their own projects based on
UASs. Accordingly, they have the possibility of loading sensors with adequate spectral and
radiometric resolution to satisfy their own research requirements.

The possibility of working with multispectral cameras on these platforms allows radiometric studies
to be carried out. To this end, sensors must undergo a calibration that analyzes the radiometric
behavior of each pixel in the different regions of the spectrum in which information has been recorded.
This behavior depends on the weather conditions and the characteristics of the sensor [17]. Analyzing
and comparing these magnitudes to other field measurements, a vicarious calibration model is
achieved [18] following the empirical line approach [19]. As a result, vicarious calibration allows
physical quantities to be known in units of radiance (W-m 2sr '-nm ") for any pixel from a single
image in a particular camera channel. The basis of this behavior is that each body has its own, different
reflected/emitted energy pattern that sets it apart from other material when electromagnetic energy
impinges on it [20].

This study aims to obtain the calibration parameters of a multispectral camera onboard a UAS using
low-cost targets. To achieve this, different natural and artificial surfaces were used to determine
radiance accurately at the sensor level through the use of a calibrated radiometer [21]. As result, it was
possible to extract quantitative data from the multispectral imaging. Additionally, with the
determination of the radiometric calibration parameters, several sensor corrections were applied to
improve the data quality [22]. This workflow highlights the advantages, limitations and problems
associated with radiometric capture using multispectral remote sensing onboard UASs.

The present work has the following structure and organization. First, the instruments employed are
described, together with the flight planning for data gathering (Section 2) and the radiometric and
geometric corrections made to the camera (Section 3). We then discuss the proposed calculation
process of the radiometric calibration (Section 4). Thirdly, the field campaign of the case study is
explained, and the results achieved are analyzed and validated (Section 5). Finally, we outline the
conclusions and future work (Section 6).
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Table 3. Unmanned aerial systems (UAS) characteristics.

Parameter Value
Weight without batteries 1880 g
Battery weight (5000 mAh-14.8 V) 540 g
Multispectral camera weight 1025 ¢
Full system weight 3445 ¢
Maximum range transmission 1000 m
Recommended range transmission 750 m
Estimated flight time 12 min
Maximum horizontal speed 4 km/h

The spectroradiometer used to carry out the calibration was the FieldSpec 3 ASD (Analytical
Spectral Devices) spectroradiometer. This is a general-purpose spectroradiometer used in different
areas of application that require reflectance, transmittance, radiance and irradiance measures, and it is
especially designed to acquire spectral measurements in the visible to short-wave infrared range.

The spectroradiometer is a compact, portable instrument that allows one to capture spectral data in
the region from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The spectroradiometer is
configured by three detectors, separated by appropriate filters to eliminate the light of lower orders.
The electromagnetic radiation projected onto a holographic diffraction grating is captured through an
optical fiber. This grid separates and reflects wavelength components, to be measured independently
by detectors. The visible/near-infrared (350—-1000 nm) portion of the spectrum is measured by a
512-channel silicon photodiode array overlaid with an order separation filter. The short-wave infrared
(SWIR) portion of the spectrum is acquired with two scanning spectrometers: for wavelength ranges of
1000-1830 nm and 1830-2500 nm. Each SWIR spectrometer consists of a concave holographic
grating and a single thermo-electrically cooled indium gallium arsenide (InGaAs) detector with a 2-nm
sampling interval.

The incoming light to the device is captured through a 3-m optical fiber, whose field of view (FOV)
is modified by various foreoptics.

2.2. Flight Planning

Proper planning of UAS flights is an important aspect in order to ensure that the data capture fits
the theoretical parameters and user requirements pursued and optimizes the available resources.
Furthermore, risks to humans are avoided, and higher quality images can be obtained.

This planning takes into account all the limitations and restrictions that are required by the final
images themselves to meet the objectives of the study, acting as a guarantee in the photo capture
process. The values that can be specified include the position and attitude of the camera, the flight
path, the design of the different image blocks, the determination of the overlaps between the different
images, the required camera angles, the scale (through the choice of the pixel size on the ground (GSD
(Ground sampling distance)) and control of the time of flight, among others. The theoretical GSD
value, which sets the geometric resolution of the study, is defined as:

GSD = hxS

M
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The goal is to determine the geometric (principal point coordinates, x,, y,, and principal distance, f)
and physical (radial and tangential distortion) parameters that define the internal orientation of the
camera, using a laboratory calibration.

This aim can be achieved thanks to a protocol in which image shots are convergent to a pattern or
grid of known dimensions and by applying the collinearity, which relates image points with ground
points. In particular, an open source tool, Bouguet [29], was used. More specifically, a set of images
with a planar checkerboard pattern were acquired under different roll and pitch angles. The images
ensured that the pattern covered the largest area of the image in order to model the geometric
distortions without extrapolations.

Table 4 shows the results of the 6-sensor camera (Tetracam Mini-MCA) calibration, expressed in
the balanced model [30]. This distortion model fits the effect of radial distortion (Ar) through the
coefficients, ap, a; and a, whereas the coefficients, P; and P,, model the tangential component (At),
according to the mathematical model of Equation (2):

Ar=a,r'+ar” +a,r”
At, :P‘(r'2 +2(x’—xp)2)+2P2(x'—xp)(y’_yp)

At, =P, (r'2 Jr2(y’7yp )2)+ 2P, (x’fxp)(y'fyp)

(@)

where 1’ stands for the radial distance of the real image (in contrast to the radial image of the ideal or
undistorted image). The coefficients, ap, a; and a,, are functions of the radial distance from the
principal point of symmetry. Additional information about the geometric calibration can be
found in [31].

Table 4. Radial and tangential distortion parameters of the six MCA channels.

Balanced Principal Radial Distortion Tangential Distortion
Channel .
Distance (mm) ay a; a, P P,

778 nm 9.971 0.01508 —0.00234  6.16E-05 1.45E-04  —2.74E-04
530 nm 9.849 0.01560 -0.00231 5.01E-05 2:06E-05  —1.31E-04
672 nm 9.961 0.01556 -0.00177 —1.55E-05 1.57E-04 —4.82E-04
700 nm 9.945 0.01464 —-0.00206  3.35E-05 3:20E-04  —2.44E-04
742 nm 9.974 0.01817 -0.00184 —4.55E-05 541E-05 —1.79E-04
801 nm 9.955 0.01648 -0.00178 —2.85E-05 -1.02E-05 —1.37E-04

The differences in construction between the sensors are also shown in Figure 6, where the
maximum discrepancy reaches 18 pixels, illustrating the relevance of this geometric correction for
individual image fusion.

Since the multispectral camera has six non-collinear objectives, the image fusion has to take into
account, not only the calculated intrinsic camera parameters (specific for each sensor), but also the
extrinsic parameters of the sensors; the three-axis orientation and spatial position. The distance, or
baseline, among the optical centers of the sensors will cause a parallax [32] in the image fusion.
This effect can usually be neglected in real applications (due to the height of the flight). However, for
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In classical aerial photogrammetry, aiming at the determination of physical parameters at the
surface level and not at the sensor level, the 6S atmospheric model [41] has been applied. The
modeling of the influence of the atmosphere on the propagation of radiation for a height of 1 m
(spectroradiometer data captured) and 30 m (UAS flight height) shows no discrepancy. More
specifically, the difference has an order of magnitude of <1 x 10 W-cm *sr '-nm '. Therefore, it
could be suggested that in UAS photogrammetry, the influence of the surface to sensor component of
the atmosphere is minimal, since radiation passes through a very small atmospheric column. Due to its
reduced value, the relative atmospheric correction can be neglected in the adjustment model, as
reported in [42].

Finally, the results of the radiometric calibration process were validated by checking the surface:
natural covers, such as vegetation, soil-covered land and bare soil.

4.2. Fitting Model

From multiple artificial targets collected in several images, a least squares adjustment was applied.

A robust estimation was chosen instead of an ordinary least squares (OLS) method, since OLS is
highly sensitive to outliers, because real measurements of error distributions have larger tails than the
Gaussian distribution [43]. In our case, we chose the Danish Method proposed by Krarup [44], which,
applied iteratively, gives a series of weights according to the residual values of the previous iteration.

In the first iteration, the weight matrix, W, is set as the identity matrix:
W,

ii

x=(A"-W-A)"'- (A" -W-K)

:];W‘.j:() withi# j

)

where x is the vector of calibration coefficients, A is the design matrix (digital levels) and K is the
matrix of independent terms (radiance). The residual vector v is:

v=Axx-K (3
whose a posteriori variance is:

A2 T xWxy
o =" )]
m-n
where m is the number of equations and n the total number of unknowns.
From the first adjustment of residuals, new weights are calculated individually for each equation,

based on the following weight function of the Danish estimator:

o) 1 for |v|<20
m= ke for ‘vi‘>2a (10)

where c is a constant that varies between 2 and 3, depending on the redundancy of the adjustment and
data quality.

The convergence selection criterion of the iterative process is established based on the fulfillment of
one of the following conditions:
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e Standard deviation estimator < 0.001;
e Change in variance < 0.01;
e When there are more than 20 iterations.

In the adjustment, an additional unknown was added per image to the x vector to absorb the
heterogeneity regarding the possible variations in irradiance between images; this is more likely to

occur in unstable weather conditions.
5. Experimental Results
5.1. Radiometric Campaign

The study area is located in Gotarrendura, a village close to Avila (Castilla y Ledn, Spain). Data
collection was carried out on 27 July 2012, on a pine plot of 2.52 ha, which was overflown at a height
of 30 m. The pine species was Pinus pinaster, with a density of 1330 trees per hectare and a height
between 1.5 and 2.1 m.

As control surfaces, a 5 m x 1 m greyscale canvas (GS) and six 0.55 m x 0.35 m vinyl sheets of
different colors (red, gray, white, black, blue and green) were selected, similar to [42]. These artificial
surface sizes guaranteed at least 21 pixels (up to 61 pixels), which exceeds the minimum of three times
the GSD to rule out neighbor effects. The check surfaces, corresponding to natural covers
(pseudo-invariant features), are highlighted with the yellow, orange and red circles in Figure 8.

Figure 8. Acrial image of the control and check surfaces.

The low-cost colored artificial targets provide a transportable test field as an alternative to a
permanent radiometric calibration field. They also avoid the problems of painted targets associated
with permanent test fields, caused by environmental conditions [45]. In the radiometric study,
calibration surfaces were characterized using the spectroradiometer as a detector of the radiant flux
that is reflected from such covers. During data acquisition, it was necessary to take into account that
the incidence angle that the spectroradiometer gun formed with the surfaces was as orthogonal as
possible, taking two spectral measurements per cover. Prior to each sample measurement, the
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3. MULTISPECTRAL IMAGING APPLIED TO
GEOLOGY

This chapter contains the paper Discrimination between sedimentary
rocks from close-range visible and very-near infrared images, published
in the high impact journal Plos One in July 2015.

3.1. Abstract

The aim of this paper was to validate the use of the calibrated Mini
MCA-6 multispectral camera (Chapter II) to study and discriminate
different types of sedimentary rocks arranged in their natural state. The
main difficulty was the spectral range of the camera (visible and near
infrared) that was not the ideal for the analysis of such natural covers
(short wave infrared) (Hunt, 1982). By the multispectral analysis of a set
of 12 geological formations with different percentages of limestone,
marlstone and sandstone of the Rhone-Alpes region in France, the
potential and limitations of this camera for the discrimination of
sedimentary rocks was evaluated.

The spectral signature is characteristic and inherent of each material and
shows graphically how the electromagnetic energy interacts with matter
in terms of reflected radiation. Specifically, it represents the amount of
energy reflected by the surface of a material for each wavelength of the
spectrum, expressed in percentage terms. Since the goal was to find
significant differences between the 12 geological formations within the
spectral range of the camera, raw images in digital levels were converted
into reflectance values. To this end, it was necessary not only to know the
calibration parameters of the camera for each spectral band (cO and c1)
but also the solar irradiance (E, W-m?-sr’' 'nm™) at each capture time,
which relates with radiance and reflectance (L and p) under the
Lambertian hypothesis (Equation 2). This parameter was obtained by
using a Spectralon® (Bruegge et al., 2001), a reference panel of known
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reflectance calibrated in the laboratory. The Spectralon®” was placed in
each outcrop so that it appeared in each multispectral image. Since the
reflectance is the ratio of solar irradiance and radiance (Equation 2), and
the reflectance and radiance reflected by the calibrated panel are known,
the irradiance can be calculated according to Equation 3 in first
approximation. Once the solar irradiance is known, it is possible to
transform digital levels (DL) into reflectances.

cO+cl-DL
= —_— 7T

L
E=—-r7x
P P

3)

With the set of multispectral images in reflectance values, the analysis
process to assess the recognition capability of the camera starts. On the
one hand, the spectral signature of the three types of sedimentary rock
(sandstone, limestone and marlstone) that form the 12 geological
formations was obtained, and secondly, a supervised classification based
on the results of the spectral signatures was performed by the maximum
likelihood algorithm. Four informational classes were evaluated:
limestone, marlstone, vegetation and shadows. Sandstone was not
included in the classification process since its spectral signature overlaps
with the limestone spectral signature in the range offered by the
multispectral camera.

After analysing the results, it was concluded that this multispectral
camera is capable to find spectral differences between two of the three
types of rock analysed, limestone and marlstone, not being currently
possible the discrimination between limestone and sandstone. The
spectral signatures obtained for the three rock types are consistent with
the spectral behaviour of their mineral compositions and grain sizes.
Bearing in mind that the spectral range of this camera is not the
appropriate for spectral studies of rocks, additional difficulties associated
with the study of this particular land cover should be added. Rocky walls
usually have heterogeneous surfaces that cause variations in the
reflection of incoming radiation. In addition, its surface geometry favours
the formation of surface shadows. Therefore, it is recommended to
perform the data acquisition on a cloudy day where diffused light
promotes a more progressive transition between well-lighted and shadow
areas, allowing better analysis and results of this type of coverage.
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Finally it was concluded that: (i) the sensor hybridization between this
multispectral camera and other sensor capable of recording information
in the short wave infrared and (ii) the study of the bidirectional
reflectance distribution function (BRDF) of these type of rock covers
would lead to a completely successful multispectral analysis of rock
outcropsque recoge el trabajo de investigacion de cada uno de ellos.
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Abstract

Variation in the mineral composition of rocks results in a change of their spectral response
capable of being studied by imaging spectroscopy. This paper proposes the use of a low-
cost handy sensor, a calibrated visible-very near infrared (VIS-VNIR) multispectral camera
for the recognition of different geological formations. The spectral data was recorded by a
Tetracam Mini-MCA-6 camera mounted on a field-based platform covering six bands in the
spectral range of 0.530-0.801 pm. Twelve sedimentary formations were selected in the
Rhone-Alpes region (France) to analyse the discrimination potential of this camera for rock
types and close-range mapping applications. After proper corrections and data processing,
a supervised classification of the multispectral data was performed trying to distinguish four
classes: limestones, maristones, vegetation and shadows. After a maximum-likelihood clas-
sification, results confirmed that this camera can be efficiently exploited to map limestone-
maristone altenations in geological formations with this mineral composition.

Introduction

The knowledge of the mineralogical composition of sedimentary rocks is relevant to many dis-
ciplines and sectors. In the fields of Geology and Orogeny to discover this composition is the
key for interpreting plate tectonic settings. Many regions have been destroyed and the only
record lies in the sediments of the area. Thus, the relationship between the mineralogical com-
position of sediments and the tectonic plates provides a powerful tool for recognizing ancient
tectonic settings [1]. However, ascertaining composition of geological formations in ancient
sedimentary basins is generally difficult due to chemical and physical modification of source
materials during weathering, erosion, transport and deposition [2]. For other fields such as
Environmental Economics, the study of outcrops threatened by human activity and natural
hazards as erosion, salinization and landslides is an important contribution. The clay and cal-
cium carbonate contents of the soil are used to describe soil types and reveal their vulnerability
to erosion [3, 4].
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The past decade has seen the rapid adoption of digital measurement techniques in Geology
due to the great advantages that they provide in contrast to expensive traditional techniques.
Global navigation satellite systems (GNSS), photogrammetry, laser detection and ranging
(LIDAR) and remote sensing satellite imaging systems have all been used for digital mapping
and interpretation at multiple scales [5]. Focusing on the field of remote sensing, the shortwave
infrared (SWIR) spectral range enable highly effective geological mapping [6], because rocks
and minerals have their own inherent spectral pattern in this range [7, 8]. Multispectral satellite
data is acquired at 10-30 m spatial resolution. For this resolution, satellite acquired signal in a
pixel frequently corresponds to a mixture of several types of ground covers. Close-range remote
sensing solves this spatial resolution problem avoiding such mix-up of covers. Collecting high
spatial resolution data in a more flexible way and without inadequate temporal resolution due
to orbital coverage patterns are some of the advantages of this technique. But it provides many
other benefits as several authors [9-11] highlight: the ability to inspection restricted areas and
not only the top of the outcrops, allowing real-time registration data for any configuration and
orientation of the rock formation. Thus, by analysing close-range remote sensing data acquired
from a versatile field-based platform it is possible to obtain more rigorous analysis or even
improve the classification of multi-temporal satellite imagery.

Photogrammetric outcrop models [12] provide the framework for geological mapping and
interpretation, which become indispensable to perform stratigraphic and structural analysis
[13]. Some studies have proven the ability to discriminate between different sedimentary rocks
and classify images from some outcropping terrains through the integration of multiple spatial
and spectral close-range data. Hyspectral imagery and terrestrial LIDAR data fusion is a good
example because they have proven to be a perfect combination to analyse different carbonate-
rich outcrops [14-16]. Other works [17] demonstrate the feasibility of lithological interpreta-
tions and clay content predictions in sedimentary rocks by analysing the intensity from differ-
ent wavelength terrestrial laser scanners. For all these works, sensors that cover the SWIR
range (1.300-2.600 pm) have been used.

In this article the use of a 6-band multispectral camera covering the VIS and VNIR spectral
range (0.530-0.801 pm) is proposed to demonstrate its ability to discriminate sedimentary
rocks. A set of 12 geological formations with different percentages of clay and carbonate miner-
als were studied showing the potential of low-cost sensing for noncontact measurements in
this field. In this way, geomorphology, geological mapping, exploration, geochemical hazards
and other geological applications could be remotely assessed by using passive sensor technolo-
gies at ground level. The paper is organized as follows: Section 2 describes study area where the
radiometric campaign took place; Section 3 explains the instruments used for data acquisition,
and the data processing in which the protocol followed is also described; Section 4 describes
and analyses the results achieved after the data processing, that is, the spectral signatures of dif-
ferent rock types, and the classified multispectral images. Finally, Section 5 includes the conclu-
sions arising from the use of this sensor in this field and the future work.

Study Area

The radiometric campaign was carried out in June 2014 in the Drome department of France, in
the southeastern part of the Rhone-Alps region (Fig 1). This area is lithologically characterized
by sedimentary deposits of the Upper Jurassic-Lower Cretaceous interval. In these periods, car-
bonate sedimentation was deposited at different water depths: a few meters only of depth in
shallow-marine areas [18], and up to several hundred meters of water depth in pelagic marine
areas. During these periods there were different deposition processes which gave rise to the cur-
rent outcrops mainly consisting of carbonate minerals with trace amounts of silica (limestones)
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Fig 1. Location of the study area and the studied outcrops (the Dréome department, France).
doi:10.1371/joumal.pone.0132471.g001

and clay minerals (marlstones) with different degrees of uniformity across the layers of strata.
On one hand, there were heterogeneous formations with limestone-marlstone alternations
formed during the Kimmerdigien, Valanginian or Hauterivian ages (see Fig 2). On the other,
there were more homogeneous massive outcrops from the Tithonian and Turonian ages. And
finally, marlstone outcrops formed during the Oxfordian, Aptian and Albian ages [19]. The
geology, geo-chemistry and mineralization of the study area are well described in the literature
[20, 21].

It was possible to identify 12 different geologic formations, which together make up the
stratigraphic column of the area (Fig 2). These outcrops are composed of limestone-marlstone
alternations, with occasional sandstone beds, with different thicknesses and percentages. In all,
the total stratigraphy is made up of three rock types: limestone, marlstone and sandstone, with
variations of mineral content and different degrees of weathering. In this regard, the investiga-
tion presents some difficulties and challenges due to the mentioned variety of the rock masses.

Since only two of the twelve rock formations, Formation 2 and 4 (Fig 2), were composed of
sandstone (100% and 10% respectively), the analysis was mainly focused on the discretization
between the other two rock types: limestone and marlstone. In this case eleven of the twelve
existing formations were composed of these two rock types.

It was decided to perform a first analysis focusing on the discrimination of the pure forma-
tions due to the considerable variety in their composition and the spectral range and resolution
limitations of the multispectral camera employed. Formation 1, 3 and 9 were analysed as pure
limestones, Formation 2 as pure sandstone and Formation 12 as pure marlstone. Two mixture
formations, Formation 4 and 6 were also analysed after a supervised classification. At first
sight, and for a non-specialist user in this field, Formation 4 and Formation 12 seem to be the
same; so one extra goal was to assess different spectral behaviours of them within the recording
spectral rage.

Material and Methods

Equipment

For the geological data acquisition the Tetracam Mini MCA-6 multispectral camera (Fig 3)
and several complementary devices for supporting the data collection were used. The 6-bands
multispectral camera is mounted on a special platform and fixed to an adapter swivel to allow
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Fig 2. Stratigraphic column of the 12-different Mesozoic geologic formations from newest to oldest.
doi:10.1371/joumnal.pone.0132471.9002

getting stable shots during the data acquisition. This sensor consists of six bands covering the
visible and very-near infrared range (0.530-0.801 pm) of the spectrum and collects the
reflected solar radiation from each rock formation at 10-bits radiometric resolution. Each band
is formed by a filter and a CMOS sensor (Complementary Metal-Oxide Semiconductor) pro-
viding each band its individual behaviour regarding the captured wavelength and the transmit-
tance. The technical specifications of this sensor are shown in Table 1.

In order to obtain images with physical values (reflectance) from raw digital images two
essential parameters must be known, the radiometric calibration parameters of each of the six
bands (offset and gain, c0 and c1), and the solar itradiance (E) of the capture moment. Since
the multispectral camera was radiometrically calibrated in a previous field campaign, c0 and cI
per band were known [22]. This calibration was a radiometric vicarious calibration based on
the radiance method and closely related to the empirical line correction approach [23, 24]. On
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Fig 3. Tetracam Mini MCA-6 multispectral camera.
doi:10.1374/joumal.pone.0132471.g003

the other hand, the solar irradiance for each capture moment was obtained by using a standard
calibrated reflection target (Spectralon, Labsphere) as will be explained below. The calibrated
Spectralon used in this study (Fig 4) consisted of four different panels of 99%, 50%, 25% and
12% reflectance. The spectral behaviour of each Spectralon panel was certified in laboratory.

Finally and because this camera is originally designed to be load on board unmanned aerial
systems (UASs), auxiliary equipment becomes necessary for fixing the camera and all its
devices to use it at ground level. For this purpose, a special platform to gather all the equipment
was designed (see Fig 5). This platform along with a tripod and a swivel provided stability and
allowed to rotate the camera in all three degrees of freedom to accommodate and level its posi-
tion to the orientation of the outcrops.

Data acquisition protocol

During the field work a total of 40 images were acquired to cover the 12 different geologic for-
mations in different scenarios of light and time of the day in order to have sufficient represen-
tative samples under different conditions. Fig 1 shows the exact location of all the outcrops that
were sampled around the principal village, La Motte-Chalancon.

At each outcrop considered, the Spectralon was placed on the wall of the rock mass with the
same orientation as the exposed surface (Fig 5), after which the ideal place to position the mul-
tispectral equipment was determined. Parameters as distance, orientation relative to the face of
the rock and sun orientation were taking into account for that purpose. The distance is a signif-
icant parameter because both spatial resolution and the parallax between images depend on it.

Table 1. Characteristics of the Mini MCA-6 multispectral camera.

Features Bandwidth
Number of bands: 6 Band 1 (0.530 pm): 40 nm
Distance between lenses: 34.5 mm Band 2 (0.670 pm): 40 nm
Geometric resolution: 1280 x 1024 Band 3 (0.700 pm): 80 nm
Radiometric resolution: 10 bits Band 4 (0.740 pm): 40 nm
Pixel size: 5.2 pm Band 5 (0.780 pm): 80 nm
Focal length: 9.6 mm Band 6 (0.801 pm): 80 nm
doi:10.1371/joumnal.pone.0132471.t001
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Fig4. | ical

factor of each panel.

doi:10.1371/journal.pone.0132471.9004

The Ground Sample Distance (GSD) is determined as the size of the pixel when the image is
projected to the ground surface. The GSD value is affected by distance as characterized in Eq
(1). Since the six camera lenses are not collinear, there is a parallax that affects images depend-
ing on this parameter. The greater the distance, the less parallax, until a limit is reached beyond
which the parallax is becoming negligible. This limit is 64 m according to Eq (1). Note that the
distance between objectives is 34.5 mm according to the manufacturer (see Table 1). As a con-
sequence, the GSD has to be greater than 34.5 mm to avoid significant influence of parallax.

D-S

GSD = 5 (1)

Fig 5. Positioning of the multispectral camera with respect to a rock formation including the
Spectralon placed on the wall of the rock.

0i:10.1374/journal. pone.0132471.g005
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where D is the distance between the camera and the outcrop, S the pixel size of the sensor and f
the focal length (see Table 1).

Thus, a balance between spatial resolution and the minimization of the parallax effect was
sought. At that distance and with the right orientation thanks to the tripod swivel, visible and
very near infrared images were taken such that all the exposed face was covered, whenever
possible.

Data processing

Data processing involved three main phases: obtaining the solar irradiance at the moment of
capture, transforming raw digital images into reflectance images (Fig 6) and performing super-
vised classifications trying to draw conclusions from the composition differences among the
geological formation analysed.

Solar irradiance at the moment of capture. Since data were collected at different locations
and moments of the day, they were affected by the particular solar radiation at the moment of
capture. It is necessary to eliminate the influence of this variability when extracting joint infor-
mation from the data. In order to obtain images with pixel values independent of sunlight
(reflectance images), digital levels (DL) of the raw spectral images have to be converted into
surface reflectance values. This transformation requires the knowledge of the solar irradiance
(E) at the precise moment of the image capture and the radiometric calibration parameters of
each camera band (cOpzng and clpz,4). The solar parameter was calculated from the reflected
solar radiation of a Spectralon (Fig 4). For this purpose, the Spectralon was placed in every
outcrop so that it appeared in each multispectral image (Fig 5). In the image processing phase,
and making use of its 4 reflectance panels, an average of the raw pixel values panel was deter-
mined. Thereby, 4 representative values of each reflectance panel per band (DL str-99),band>
DL (s7R-50),band> DL(STR-25),band a0d DL(sTR_12),bana) Were estimated. These values, together with
the radiometric calibration parameters of each camera band, allowed the radiance values calcu-
lation (Eq (2)). The calibration parameters were known beforehand since a vicarious radiomet-
ric calibration of the camera [22] was previously performed. A set of 4 radiance values per
band (L;pgna), one for each Spectralon panel, were estimated.

[ VPR D)

Lipana = Opona + )

Tyuna

‘With these parameters and according to Eq (3), an average of the solar irradiance (E,,,, [W.
m2.sr-1.nm-1]) was estimated for each capture moment and band as an average of the four DL

Fig 6. for images in values.
doi:10.1374/joumal.pone.0132471.9006
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where c0p4pq and clp,py are the radiometric calibration coefficients, of each camera band, Tpapq
is the exposure time per band at each moment of the image capture and DL; are the digital lev-
els of each reflectance panel of the Spectralon.

Reflectance images. After this processing step, the first results of the research, spectral sig-
natures of the outcrops, were obtained. Getting reflectance images involves transforming, digi-
tal levels of the raw images into reflectance values. In this way, assuming the outcrop as a rocky
Lambertian surface (uniform reflectivity), the following Eq (4) is applied to every pixel of each
six multispectral images.

Dyend + Ly DL

e @

Rband(%) =

where Ryanac is the reflectance value of each pixel in percentage. cOpana> Clpana and E,,,; are
the calibration parameters of the camera and the solar irradiance, respectively.

Once the reflectance images were obtained, multispectral images were created and stored as
6-dimensional matrixes (1024 pixels x 1280 pixels x 6 images) where reflectance values per
band can be extracted just by clicking a pixel (Figs 7 and 8). If these reflectance pixel values are
plotted on the y-axis and the respective wavelengths of the camera on the x-axis, spectral signa-
tures of each geological formation are obtained. Taking into account the mean values and stan-
dard deviations of the outcrops, conclusions about the discrimination potential of the camera
in this field were derived.

Classified images. The third step classifies the multispectral images into 4 classes: lime-
stone, marlstone, vegetation and shadows; resulting in an easy-to-interpret classified image
that will help to assess the use of this sensor in the characterization and recognition of rocks.
For this purpose, a supervised classification based on the maximum likelihood (ML) algorithm
[25] was performed after masking image pixels belonging to sky and/or road.

The ML classifier quantitatively evaluates both the variance and covariance of the category
spectral response patterns when classifying an unknown pixel (x). Four different sets were pre-
pared to train the process assuming that the distribution of the pixels forming the category
training data is Gaussian. This assumption of normality is generally reasonable for common
spectral response distributions. Under this assumption, the distribution of a category response
pattern (k) can indeed be completely described by the mean vector and the covariance matrix.

Fig 7. Reflectance per band of a specific rock formation.
doi:10.1374/journal.pone.0132471.g007
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Fig 8. Spectral signatures of the three rock types and the iation of their

doi:10.1371/joumnal pone.0132471.g008

With these parameters, the statistical probability of a given pixel value being a member of a
particular land cover class (P(x / k)) can be computed. The resulting bell-shaped surfaces are
called probability functions (Eq (5)), and there is one such function for each spectral category
[26].

P(x/k) = —In[S K| - (= m)"Y K (x — ) )

where |2k| is the covariance matrix and y the mean vector of the training data belonging to
each class.

In this way, a class is assigned to a pixel when the probability of belonging to this class in Eq
(5) is maximal.

Experimental Results
Spectral signatures

This research covers the study of 12 geological formations composed of three types of sedimen-
tary rocks, sandstone, limestone and marlstone. Fig 8 depicts the spectral signatures of the geo-
logical formations with higher percentages of each of these rocks: Formation 1, Formation 2,
Formation 3, Formation 9 and Formation 12 (compare Fig 2). Formation 1, 3 and 9 were ana-
lysed as pure limestones, Formation 2 as pure sandstone and Formation 12 as pure marlstone.
For each rock formation manually representative pixels were selected, sampling areas clear of
vegetation and shadows. For each selected pixel, reflectance values of the 5x5 nearest neigh-
bours (involving 25 pixels) were stored. Finally, the average reflectance and standard deviation
of the stored values were calculated with the support of software developed using Matlab.

For the considered samples the lowest standard deviation value (with an average of 1.3%)
appears for the Formation 12 (95% marlstone). This behaviour is consistent with the hypothe-
sis that experts support, errors in spectral measurements increase when the grain size increases
[27]. A large grain has a greater internal path where photons may be absorbed [28]. Indeed
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marlstones have the smallest grain size of the three types of rocks (< 0.06 mm) due to the clay
minerals composition [29]. On the other hand, the highest deviation value occurred for lime-
stones (with an average of 4.5%) very close to sandstones (with an average of 3.6%). In this
case, there is much variability in the grain size due to the different composition of its fragments;
but also because the spectral signature of limestones was calculated as an average of three dif-
ferent formations. Finally, another source of variability in the reflectance of a rock is the degree
of mechanical weathering [30], so depending on the massivity and the degree of homogeneity
of the formation more or less errors were obtained in the measurements.

By analysing the reflectivity of the examined formations it can be confirmed that the spectral
signatures are coherent with the reflectance behaviour of their minerals. Eleven of the twelve
geological formations are composed of different proportions of limestone and marlstone. Only
Formation 2 and 4 are composed of sandstone (100% and 10% respectively). For that reason,
the analysis was mainly focused on the discretization between these two rock types (limestones
and marlstones). Limestones are composed mainly of calcium carbonate. Moreover, marl-
stones are composed of clay. Due to the reflective properties of these materials (higher reflec-
tance in the case of calcium carbonate [31]) depending on the percentage of these components,
more or less reflectance was obtained. Fig 8 shows that the spectral signature of sandstones and
limestones in the 0.530-0.801 pm spectral range is quite similar. In addition, Fig 8 indicates
that it is possible to discriminate between limestones and marlstones because, in spite of the
high variability of limestone measurements, both spectral signatures do not overlap.

As pointed out in Section 2, obtaining any difference between Formation 4 and Formation
12 was a challenge because these formations, at first sight, look the same. As shown in Fig 9,
and despite of the reflectivity differences between these two formations, we may not be able to
obtain good results from a classification based only on these two formations due to their spec-
tral patterns overlap (taking into account the standard deviations). Nevertheless, their spectral
signatures are consistent with their composition; Formation 4 has more reflectivity because it

Fig 9. Sp | of F 4 and 12 and the of the
doi:10.1371/journal.pone.0132471.9009
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contains sandstone. Regarding the deviation degree of measurements (an average of 3.1% in
Formation 4), the explanation lies in the fact that the greater variability in the composition, the
greater deviation in the measurements.

Classification results

In the third step of data processing a supervised classification was performed. Four different
training sets were chosen to classify final reflectance images into 4 classes: limestone, marl-
stone, vegetation and shadow. Sandstone was excluded from the classification process as only
two formations, Formation 2 and 4, were composed of this material and because the results in
Fig 8 indicate that the spectral response of sandstone in the spectral range covered by the sen-
sor is almost identical to that of the pure limestone formation. Formation 1, 3 and 9 were
selected to represent pure limestone and Formation 12 representing pure marlstone. Fig 10
illustrates the resulting classified images for the case of four geological formations, pure lime-
stone and marlstone (Formation 1 and Formation 12) and two mixed formations (Formation 4
and Formation 6). In the classified images white pixels represent pixels masked previously to
be out of this process.

The classified images were obtained after calculating the probability of belonging to each of
the 4 classes. This probability was graphically represented for each class as an 8-bit grey scale
image where the maximum probability was represented in white (value of 255) and the mini-
mum in black (value of 0). These probability images are shown in order in Fig 10B: probability
of belonging to the limestone, marlstone, vegetation or shadow class. It is observed that vegeta-
tion areas are perfectly discriminated except in the case of the Formation 12 where some vege-
tation areas were classified as limestone. This fact happens due to the pre-set configuration of
the camera filters. The wavelengths of each filter were chosen for previous vegetation studies.
Vegetation absorbs red and reflects green and infrared radiation. So by analysing red and infra-
red wavelengths we can provide information about the vegetation s health [32].

Regarding the mixed formations, in the case of Formation 4 there was a higher percentage
of blue pixels (limestone) even though their real percentage is 5%. A possible explanation was
the presence of sandstone (10%) and because the slope of the outcrop influenced the way the
light was reflected.

To evaluate the separability between classes the transformed divergence based on means
and variance-covariance matrix [33] was used as a quantitative estimator for the 4 training
samples. Table 2 shows the separability between the 4 classes (without considering the back-
ground or null class).

As Table 2 shows, results from class separability confirm that the main goal of this study has
been achieved, a high separability between limestone and marlstone (99.99%). It must be
pointed out that for this results a proper radiometric calibration of the multispectral camera
and different lenses corrections [22] were applied to work in reflectance values (characteristic
values of each material). The worst case was for marlstone and shadows (90.42% of separabil-
ity) but remained within an acceptable range. This fact would be explained due to the low
reflectivity of this sedimentary rock. In this way, there were some areas where the classification
was less efficient than it should be. To conclude, it is also worth noting that whenever vegeta-
tion was compared to another class, separability results were quite good. This was expected
because the configuration of the wavelengths makes the camera ideal for vegetation studies.

Conclusions

In this paper a visible-very near infrared multispectral camera was tested and analysed in a
field campaign in the Drome department of France. As a result, its ability and limitations to
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Fig 10. (a) Band-5 images. (b) Images of probability. (c) Final classified images.
doi:10.1371/journal.pone.0132471.g010

discretize sedimentary rock formations were evaluated regarding the spectral range of the cam-
era (0.530-0.801 pm) and the homogeneity of the rock surfaces.

Regarding the spectral signatures of the most pure geological formations (Fig 8) it is con-
cluded that although it is not possible to completely discriminate between all of them, the
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Table 2. Transformed divergence (0-2).
Limestone Marlstone Vegetation
Maristone 1.999834 = ©
Vegetation 1.999739 2.000000 =
Shadow 1.917816 1.808445 1.988555

doi:10.1371/joumal.pone.0132471.1002

spectral signatures are consistent with their composition. The highest reflectivity response was

obtained for sandstones and limestones, which usually consist of quartz and calcite grains

respectively. Finally Formation 12, composed mostly of marlstones, obtained the lowest reflec-
tivity. Due to the percentage of sandstone in the Formation 4 (10%) it had higher reflectance
than Formation 12 although both mostly had the same grain size and similar degree of
weathering.

As these geological formations were mainly composed by 2 of the 3 types of sedimentary
rocks analysed (limestone and marlstone), a maximum likelihood supervised classification was
performed by distinguishing 4 classes: limestone, marlstone, vegetation and shadows. After
comparing the classified images (Fig 10) with their corresponding geological formation com-
position (Fig 2), it is possible to conclude that this multispectral camera is able to discriminate
between these 2 types of sedimentary rocks. It has been demonstrated that limestones and
marlstones have different spectral patterns in the 0.530-0.801-pum spectral range. By contrast,
it is not possible to find notable differences between the response patterns of limestones and
sandstone. The spectral range of this camera does not allow the discrimination between them.
It would be possible by using a capture sensor that works in the SWIR range of the spectrum
(1.4-3um).

Derived from this analysis, some conclusions are listed on the difficulties we found in the
radiometric analysis of rocks in general and the limitations arising from the use of this camera
in particular:

« The orientation of the outcrop complicates radiometric analysis because different orienta-
tions and roughness reflect light in different directions [34]. Even if the camera is properly
stationed, it will pick different reflectances from the same rock due to the different orienta-
tion of their faces.

« The homogeneity of the geological formation is a relevant property. In this study the most
homogeneous lithological mass belongs to the Formation 12 [35], the “Tetres Noires” forma-
tion, which had the lowest standard deviation in its measurements.

« Greater homogeneity in sunlight results in a better radiometric analysis because the rock will
be evenly illuminated without the presence of shadows or glare in different parts. Therefore,
cloudy days are the most suitable days for data collection.

o The spectral range of the camera is not the most suitable for characterizing different types of
geological formations, although results in the discrimination of rock types are encouraging.

Future improvements in methods and equipment will help to achieve better results. With
respect to methods, Bidirectional Reflectance Distribution Function (BRDF) studies could
be incorporated to study how light is reflected at each geological formation and moment.
In this way, reflectance results will improve as it is no longer necessary to assume that the sur-
faces scatter in a Lambertian way and depend on the slope of the outcrop. Regarding the equip-
ment, the combined use of different remote sensors such as terrestrial laser scanners, will
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complement spectral information and will provide 3D models giving scale, slope and surface
roughness. This information may help improve the final classification process.
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4. SENSOR FUSION APPLIED TO CIVIL
ENGINEERING AND CULTURAL
HERITAGE

4.1. Detection of pathologies in facades from active and
passive remote sensing

This section contains the paper Multispectral radiometric analysis of
facades to detect pathologies from active and passive remote sensing,
published in the high impact journal Remote Sensing in January 2016.

4.1.1. Abstract

The purpose of this paper was to achieve the hybridization of two
geomatics sensors with different operating principles, a passive and an
active sensor, to detect pathologies of facade building materials. This is
to determine, firstly, what operating principle and spectral range was the
most suitable for the detection of some pathologies such as moisture,
biological colonizations (mosses, fungi, etc.) or chemical alterations and,
secondly, to assess the degree of improvement obtained by working with
radiometrically calibrated sensors. For this purpose, the Mini MCA-6
multispectral camera (Chapter II) and the FARO® Focus-3D terrestrial
laser scanner were analysed.

Passive sensors detect natural radiation that is emitted or reflected by
surface covers while active remote sensing emits its own radiation source
in order to scan objects (Kaasalainen et al., 2005). While it is true that the
use of terrestrial laser scanners is more widespread to perform geometric
studies and measure distances, in this case the intensity of the return
signal is used to perform radiometric studies of different land covers. The
main advantage of active remote sensing is that it is less influenced by
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atmospheric conditions than passive remote sensing and it can be used
both day and night.

To merge data from both kind of sensors and analyse them in physical
quantities (reflectances, in this case) several corrections and
transformations must be applied to raw data. In the case of multispectral
images, they must be corrected from two systematic radiometric errors
that are propagated to final images, the background error and vignetting
effects (Chapter II). For its part, 3D laser data must be aligned and
filtered to remove redundant information captured.

After this pre-processing, and thanks to the use of a Spectralon® in the
data acquisition (Chapter III), raw data was converted into reflectance
values. For the case of the multispectral camera, it was previously
calibrated (Chapter II), and was only necessary to know the solar
irradiance at the time of each acquisition. For its part, a vicarious
radiometric calibration of the terrestrial laser scanner was performed by
the reflectance method (Palmer, 1993). Thus, the relationship between
the intensity of the return signal from the Spectralon” and the a-priori
known reflectance of the Spectralon” was analysed.

Finally, and in order to analyse data from both sensors together, both the
3D data and multispectral images were transformed into true orthoimages
thanks to the metric provided by the laser scanner and after a prior
computation of the external orientation of each multispectral image.
These orthoimages were finally classified by applying several supervised
and unsupervised classification processes for both raw pixel values and
reflectance, concluding that:

= The terrestrial laser scanner was the sensor for which better
results were obtained since, on the one hand, it is not influenced
by changes in lighting conditions and, on the other, the main
pathology of the facade (moisture) is better characterized by the
laser scanner wavelength. For its part, results of the multispectral
camera were conditioned by both the registration of its six bands
for the orthoimage generation and the influence of lighting
conditions. Better results could be expected if the data acquisition
was conducted in a cloudy day with diffuse light.
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= [t should be mentioned that the laser scanner gives an added value
to radiometric data. It provides scale and as a result is not only
possible to quantify the pathologies detected by laser intensity but
also detect possible structural problems such as cracking, peeling,
etc.

In general, and for both cases, significant improvements were achieved
from the use of calibrated sensors. A 34% improvement of the results, by
means of Kappa coefficient (Cohen, 1960), was reached after calibrating
both Sensors.
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Abstract: This paper presents a radiometric study to recognize pathologies in facades of historical
buildings by using two different remote sensing technologies covering part of the visible and very
near infrared spectrum (530-905 nm). Building materials deteriorate over the years due to different
extrinsic and intrinsic agents, so assessing these affections in a non-invasive way is crucial to help
preserve them since in many cases they are valuable and some have been declared monuments of
cultural interest. For the investigation, passive and active remote acquisition systems were applied
operating at different wavelengths. A 6-band Mini-MCA multispectral camera (530-801 nm) and
a FARO Focus3D terrestrial laser scanner (905 nm) were used with the dual purpose of detecting
different materials and damages on building facades as well as determining which acquisition system
and spectral range is more suitable for this kind of studies. The laser scan points were used as base to
create orthoimages, the input of the two different classification processes performed. The set of all
orthoimages from both sensors was classified under supervision. Furthermore, orthoimages from each
individual sensor were automatically classified to compare results from each sensor with the reference
supervised classification. Higher overall accuracy with the FARO Focus3D, 74.39%, was obtained
with respect to the Mini MCA®6, 66.04%. Finally, after applying the radiometric calibration, a minimum
improvement of 24% in the image classification results was obtained in terms of overall accuracy.

Keywords: cultural heritage; multispectral camera; laser scanning; radiometric calibration; remote
sensing; close range photogrammetry; multispectral classification

1. Introduction

Historical buildings and monuments are valuable constructions for the area where they are placed.
The degradation of their construction materials is caused mainly by environmental factors such as
pollution and meteorological conditions. Specifically, the presence of water plays an important role in
stone deterioration processes [1]. It accelerates the weathering processes contributing to dissolution
and frost/thaw cycles among others [2] allowing the formation of black crust on the rock surface
resulting in mechanical and chemical degradations of stones. For that reason the use of non-contact
and non-destructive technologies to study stone damages is important for the preservation of buildings
and for the choice of the best technique for restoration [3,4].

Terrestrial laser scanners and multispectral digital cameras are two different technologies that are
suitable for these studies. They are non-destructive and non-invasive sensors that allow researchers to

Remote Sens. 2016, 8, 80; doi:10.3390/rs8010080 www.mdpi.com/journal/remotesensing
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acquire massive geometric and radiometric information across the building with high accuracy and in
a short acquisition time. The geometrical information provided by laser scanner technology has been
successfully applied in a large number of fields such as archaeology [5], civil engineering [6], geology [7]
and geomorphological analysis [8]. On the other hand, radiometric information, provided by the laser
intensity data and the multispectral digital cameras, is used less frequently. Even so, its high potential
for classification tasks and recognition of different materials has been demonstrated [9]. Nowadays,
in the literature, one can find works related to this issue ranging from methodologies of radiometric
calibration [10] to corrections of intensity values [9,11] including applications of the intensity data [12].
Spectral classification methods are based on the properties of the reflected radiation from each surface
and the fact that each specific material has wavelength dependent reflection characteristics. There are
many classification methods, which vary in complexity. These methods include hard and soft classifiers,
parametric and non-parametric methods and supervised and unsupervised techniques [13]. There are
several works related to the application of these techniques to the identification of damage on building
surfaces [14-18].

The main objective of this paper is the classification and mapping of pathologies and materials of
a historical building facade from reflectance values at different wavelengths by combining intensity
calibrated data from a FARO Focus3D laser scanner and calibrated images from a 6-band Mini-MCA
multispectral camera. Additional goals were evaluating the degree of automation in the pathology
detection process of fagades. To achieve these objectives, the paper is divided into the following
sections: Section 2 gives the details and specifications of the equipment employed and thoroughly
describes the methods employed in the workflow methodology. Section 3 shows the classification
maps and accuracy results for both unsupervised and supervised classifications, closing with Section 4
which summarizes the main conclusions and findings drawn from the study.

2. Material and Methods

The methodology developed to reach the objectives of the paper consists of three main stages: the
data acquisition, the pre-processing and the processing of data as is outlined in Figure 1. For the data
acquisition, two sensors with different operating principles were implemented: a passive multispectral
camera and an active terrestrial laser scanner. The pre-processing step involved data filtering and
several corrections applied to the spectral information to finally obtain data in reflectance values.
During the last step and taking advantage of the metrics from the scan points, reflectance orthoimages
were generated for both the multispectral images and the laser intensity. These orthoimages were the
input for two different classifications processes: a clustering classification with data from each sensor
and a supervised classification with the set of all data from both sensors.

Figure 1. The workflow of the methodology presented. Acronyms: RC = Radiometric calibration and
Mp = Millions of points.
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2.1. Equipment

For the documentation of the fagade, the following equipment was used: two radiometrically
calibrated sensors with different characteristics and data acquisition principles, a passive multispectral
camera and an active terrestrial laser scanner. Figure 1 shows the main characteristics of them and the
different stages of the workflow followed in this research.

For the multispectral data acquisition, a calibrated lightweight Multiple Camera Array
(MCA-Tetracam) was employed. This low-cost sensor allows versatility in data acquisition; however it
requires the radiometric and geometric corrections to ensure the quality of the results [19]. It includes
a total of 6 individual sensors with filters for the visible and near infrared spectrum data acquisition.
More specifically, the individual bands of 530, 672, 700, 742, 778 and 801 nm were used. The longest
wavelength was chosen taking into account that the multispectral sensor is not externally cooled.
In spite of its 1280 x 1024 pixels of image resolution, the camera has a radiometric resolution of 10 bits.
The focal length of 9.6 mm and the pixel size of 5.2 um yield a facade sample distance (FSD) of 5.4 mm
for a distance of 10 m, which should be taken into account for the pathology detection performance in
small elements. The main limitation of this camera is the field of view (38° x 31°), so several captures
were needed to keep the FSD.

The FARO Focus3D is a phase shift continuous wave terrestrial laser scanner (TLS) operating at
a wavelength of 905 nm. It is not common to use this kind of sensor to perform radiometric studies
but it guarantees a comprehensive data acquisition whose results are not influenced by changes in
light. This device measures distances in a range of 0.60-120 m with a point measurement rate of
976,000 points per second. It has an accuracy of 0.015° in normal lighting and reflectivity conditions
and a beam divergence of 0.19 mrad, equivalent to 19 mm per 100 m range. The field of view covers
320° vertically and 360° horizontally with a 0.009° of angular resolution and the returning intensity is
recorded at 11 bits. This laser scanner includes, in addition, a double compensator in the horizontal
and vertical axis that can be used as constraint for the scan alignment.

Additionally, a high resolution spectroradiometer (ASD FieldSpec3) (Figure 2) was used as
a remote detector of radiant intensity from the visible to the shortwave infrared ranges (350 to 2500 nm
with a maximum spectral resolution of 3 nm and +1 nm wavelength accuracy) to validate the spectral
results of the study [20]. Equipped with optical fiber cables, it measured reflectances from the different
materials and covers of the fagade with a 25° field of view. Measures were made by positioning the
spectroradiometer gun (Figure 2a) as orthogonal as possible and at a distance of approximately 10 cm
from the sample, trying to cover a relatively homogeneous area of the material.

Figure 2. ASD FieldSpec3 spectroradiometer collecting spectral radiation reflected from (a) the
Spectralon target and (b) mortar between contiguous stones of the examined fagade.

2.2. Data Acquisition

Since each material has a unique reflectance behavior depending of the wavelength, the presence
of pathologies on fagades, such as moisture, moss or efflorescence, is likely to be successfully detected
by analyzing the reflected visible and very near infrared radiation from the fagades in reflectance
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values instead of digital levels (output digital format of the device). That is why these two sensors were
radiometrically pre-calibrated and used to obtain orthoimages with surface reflectance values instead
of digital levels. Since reflectance, for the specific case of a passive sensor, is a function of the solar
incident radiance, a standard calibrated reflection target (Spectralon, Labsphere) was required and
placed on the facade (Figure 2a), thus it appeared in every multispectral image to be able to calculate
the solar irradiance (E) of each capture moment.

Ilumination is a crucial parameter for data acquisition with passive sensor, particularly when
several shot positions are required to cover the object of study. For that reason and to ensure the
greatest resolution, taking fewer photos as far as possible was prioritized in this study. A total of
56 captures were collected with a FSD of 5.4 mm for the worst case so that the standard calibrated
reflection target appeared in all of them.

On the other hand, the laser scanner data acquisition was designed so that the effect of the laser
beam incidence angle [21,22] was minimized. Intensity data at 11-bit resolution was collected at
an average distance of 10 m through three scans with scan area restrictions. Thus, 7 m of fagade
were covered for each of the scans assuming a maximum incidence angle error of 5.6% regarding the
maximum oblique angle of incidence (19.29°). In addition, scanning positions were selected according
to the different technical specifications of the scanner for an spatial resolution of 6 mm at the working
distance. The laser network was adapted and filtered due to the presence of obstacles that hinder
a single station data acquisition.

2.3. Pre-Processing

Before the reflectance orthoimage generation some corrections to raw data were applied to avoid
error propagation in the radiometric calibration process. In this section, these radiometric corrections
and the final radiometric calibration were described as well as the orthoimages generation process.
Finally, the orthoimages were classified to obtain maps of different pathologies and building materials.

2.3.1. Multispectral Images Corrections

Low-cost sensors, such as the Mini MCAG6, are more likely to be affected by different noise sources
so that the actual value of radiation collected by them is altered (Equation (1)) [23]. Specifically, the Mini
MCAG6 was affected by two different sources errors: a background noise and a vignetting effect [20].
Both errors were studied under precise laboratory controlled conditions for each wavelength band.

The background noise is a systematic error caused by the sensor electronics of the camera. It was
analyzed in a completely dark room in the absence of light determining the noise per band depending
on the exposure time. For this study, the maximum background error was for the 801-nm band and
involved a 1.07% increment of the actual digital level value. Regarding the vignetting effect [24], the
radial attenuation of the brightness was studied taking images of a white pattern with uniform lighting
conditions. Digital levels of each multispectral image were corrected for these two effects through
a script developed in Matlab to improve the data quality before the radiometric calibration.

DLraw = DLysdiance + (Dle + DLU) (1)

where DL, are the digital levels of the raw images, DL, 4i,,cc are the digital levels from the radiance
component, DLy, are the digital levels from background noise and DL, are the digital levels from the
vignetting component.

2.3.2. Filtering and Alignment of the Point Clouds

The raw laser scanner data were filtered and segmented in order to remove those points that
were not part of the object of study (adjacent building, artificial elements, trees, etc.). The individual
point cloud alignment was done by a solid rigid transformation by the use of external artificial targets
(spheres). The spheres were stationed in tripods at the plumb-line plane surveyed by the global
navigation satellite system (GNSS). The laser local coordinate system could be transformed to a global
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coordinate system (UTM30N in ETRS89), allowing the geo-referencing of the subsequent classification
for a global analysis and interpretation. This proposed workflow allowed a final relative precision of
the coordinates of the artificial targets of 0.01 m and an absolute error of 0.03 m after post-processing.
As a result, a unique point cloud in a local coordinate system with 11 mm precision (due to the error
propagation of inherent error sources of laser scanner [25] and the error associated to the definition of
the coordinate system) was generated.

2.3.3. Radiometric Calibrations

To perform the radiometric calibration of both sensors, auxiliary equipment such as lambertian
surfaces with known spectral behavior (Spectralon) and/or a spectroradiometer are needed to solve
the calibration. Thus, after the calibration process images values, in the case of the camera, and points’
intensities, in the case of the laser scanner, correspond to the radiation emitted by the surface expressed
in radiance or reflectance. The Mini MCA6 multispectral camera was calibrated in a previous field
campaign [20] through in situ spectroradiometer measurements of artificial surfaces, with known and
unknown reflectance behavior (Spectralon and polyvinyl chloride vinyl sheets respectively). Regarding
the radiometric calibration of the TLS, it was carried out in laboratory by using a Spectralon and in
absence of light.

The multispectral camera was calibrated by the radiance-based vicarious method [26-28], being
the transformation equation from raw images into images with reflectances values Equation (2):

cOx + cly) - DL/Foy
Pmca = T/ T (2)

where ¢0, and c1,, offset and gain, are the calibration coefficients of each camera band, Fv, the
shutter opening time factor and E, the solar irradiance at the ground level. Table 1 summarizes the
multispectral camera calibration coefficients and the R? determination coefficient achieved per band.

Table 1. Calibration coefficients of the Mini MCA6 per band.

Bands c0) cly R?

530 nm 0.000264 0.057718 0.9816
672 nm —0.000795 0.050005 0.9823
700 nm —0.000861 0.041353 0.9820
742 nm —0.001205 0.074335 0.9843
778 nm —0.001510 0.047292 0.9846
801 nm —0.000834 0.047656 0.9827

In order to obtain reflectance values directly from laser data, a reflectance-based radiometric
calibration [28] consisting of analyzing the distance-behavior of the intensity data (Figure 3) was
performed (Equation (3)).

prago = €™ b-d* . 1O 3

where a and b were the empirical coefficients related to the signal attenuation and internal TLS
conversion from the received power to the final digital levels, d the distance between the laser scanner
and the object, c1r the gain of the TLS and DLp the raw intensity data in digital levels (11 bits).
Please note that the empirical coefficients were obtained by a laboratory study, since the TLS internal
electronics and intermediate signal processing is not disclosed.

In this case, a laboratory experiment from 5 to 36 m at one-meter intervals provided enough
information to study the FARO Focus3D internal behavior (Figure 3). It was conducted in low-light
conditions at a controlled temperature of 20 °C to model and simulate the system behavior.
By positioning a Spectralon at each distance increment, intensity data were acquired at a quarter
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of the maximum resolution of the laser scanner (6 mm). The calibrated surface (Figure 2a) consists of
four panels of 12%, 25%, 50% and 99% reflectance and it was assembled on a stable tripod to ensure its
verticality. The raw intensity data from each reflectance panel were obtained by averaging the intensity
values of the points belonging to each panel. The mean intensity value was plotted per panel and
distance resulting in the Figure 4.

Figure 3. Sketch of the test performed to analyze the internal radiometric behavior of the
FARO Focus3D.

Figure 4. FARO Focus3D backscattered intensity behavior for the measurements of the four Spectralon
panels at 1 m distance increments related to the signal attenuation (Equation (3)).

Figure 4 shows the signal attenuation of the FARO Focus 3D with distance as well as the
logarithmic model that the measurements follow for distances up to 9 m. This particular behavior was
noted in previous research works with similar sensors [29] and it is explained by the lidar equation [30].
By knowing the calibrated reflectance values of each Spectralon panel for 905 nm, the wavelength of
the laser scanner, field measurements could be related with these reflectance values at each studied
distance. Being 0.992, 0.560, 0.287 and 0.139 the normalized (0-1) reflectance values for the panel of
99%, 50%, 25% and 12% of reflectance respectively. Figure 5 shows how these values relate at a 10 m
distance, and follow an exponential relationship which is shown in Equation (3). This distance was
chosen as a threshold since for lower distances the calibration model changes due to the internal
measurement system, involving alternative mathematical models.

As Figure 4 shows, the greater the distance the greater the intensity errors in the measurements.
This behavior is related to the decrease of the received power due to the distance attenuation and
signal scattering. Since the effective range of the employed TLS is higher than the studied distance,
this error only appears significantly in the lower reflectance surface (12% panel).
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Figure 5. Relationship between TLS raw intensity data and reflectance for each spectralon panel at
10 m distance.

Based on the empirical study of the laser response, the attenuation of the signal with the distance
(Figure 4) and the logarithmic behavior of the sensor [29], the relationship between digital levels and
reflectances was finally approximated according to the Equation (4).

PEARD = P4 3,907 107742 . L005415-DL )

This empirical equation can be applied only to objects at a distance over than 8 m since as can be
shown in Figure 4, the FARO Focus3D has a completely different behavior for shorter distances.

2.4. Processing

In this subsection reflectance products are joined to achieve the orthoimages at each wavelength
and they are finally classified to obtain maps of different building materials and pathologies.

2.4.1. Orthoimages Generation

Once the final point cloud was filtered, aligned and calibrated, a triangulation was applied
to create the digital fagade model (DFM). This step was required in order to generate continue 2D
products (in the form of true orthoimages) and carry out the pathology detection by the classification
process. For the DSM generation the incremental triangulation Delaunay algorithm was applied [31].
The output was refined to avoid artifact, meshing gaps, and other errors [32].

Orthoimages are highly demanded products that offer many benefits: metric accuracy and
radiometric information useful to analyze different information quantitatively and qualitatively.

For the orthoimage generation, it was necessary to know the external orientation of the images
with respect to the coordinate system of the laser point cloud model. For that purpose an average of
20 corresponding points between the point cloud and images were manually established. The image
projection was characterized by a rigid transformation (rotation and translation) together with the
internal camera parameters.

Orthoimages were generated based on the anchor point method [33]. This method consists
of applying an affine transformation to each one of the planes formed by the optimized triangular
mesh, which was obtained from the point cloud determined by the laser. Through the collinearity
condition [34], the pixel coordinates of the vertices of the mesh were calculated, and the mathematical
model of the affine transformation directly relates the pixel coordinates of the registered image and of
the orthoimage.

2.4.2. Orthoimages Classifications

In order to categorize the orthoimages in different informational classes a previous
automatic unsupervised classification and a posterior supervised classification were performed.
The unsupervised classification was based on the Fuzzy K-means clustering algorithm where each
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observation can concurrently belong to multiple clusters [35]. For a set of n multidimensional pixels,
the automatic management in / clusters iteratively minimizes the Equation (5) [36]:

n A
Jm = Z Z u™ || xi—c 1> 1<m<w )
i=11=1

where m represents any real number greater than 1, x; the i-th of d-dimensional measured data, u; the
degree of membership of x; in the cluster ], ¢; the d-dimensional center of the cluster and || == ||=
Euclidean norm expressing the similarity between any measured data and the center.

Fuzzy partitioning is carried out through an iterative optimization of the objective function shown
above, with the update of membership and the cluster centers by Equation (6).

n
1 > uj - x;
i=1
u = 0= ©)
- m
& {u xi—c | ] m—1 v
= LI xi—ce ||

This iteration will stop when max;; {‘uﬂ (k+1) _ uj (k) ‘} < g, where ¢ is the stop criterion between
0 and 1 and k represents the iteration steps.

After this classification, a first approach of the spectral classes and different construction materials
was obtained. With a subsequently supervised classification and applying the expert knowledge of
some classes, the final results improved. Furthermore, this supervised classification will serve as
reference to discuss which sensor is the ideal one for detecting materials and pathologies in facades.

In this case, a maximum likelihood (ML) classification algorithm [37] was applied. The ML
classifier quantitatively evaluates both the variance and covariance of the category spectral response
patterns when classifying an unknown pixel. The resulting bell-shaped surfaces are called probability
functions, and if the prior distributions of this function are not known, then it is possible to assume
that all classes are equally probable. As a consequence, we can drop the probability in the computation
of the discriminant function F(g) (Equation (7)), and there is one such function for each spectral
category [38].

F(g) =-In ‘Zpl - (8- }‘p)TZ;rl(g— Hp) (7)

where p is the p-th cluster, &, is the variance-covariance matrix and 1, represents the class mean vector
and g the observed pixel.

3. Experimental Results

The study area was the Shrine of San Segundo declared World Cultural Heritage in 1923 [39]
(Figure 6). This Romanesque shrine is located in the west of the city of Avila (Spain) and was built in
the 12th century with unaltered grey granite plinths and walls with the alternation of granite blocks
with different alteration degrees. The unaltered granite is mainly present in the blocks of low areas
because of its high compressive strength and resistance to water absorption.

The field work was carried out on 27 July 2012 around the southern facade of the church (Figure 6),
the most interesting facade from a historical point of view because it preserves the Romanesque main
front. The five archivolts and capitals are decorated with plant and animal motifs. A total of 3 stations
for the case of laser scanner were performed to cover the facade at a distance of 10 m (see Figure 6 right).
The resolution of the data capture of the FARO Focus3D was a quarter of the full resolution provided
by the manufacturer, 6 mm at 10 m. Moreover, the fagade was photographed at the same distance with
the Mini MCA6 multispectral camera with a FSD of 5.4 mm. A selection of 9 multispectral images of
the 56 (7 per station) were used for the orthoimages generation. This selection was related with the
most suitable images regarding the area of study and the optimal sharpness and quality of the set of
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images. The total volume of information generated amounted to 10.7 GB, where the great part was due
to the meshes and orthoimages generation projects. Figure 7 shows the set of the 7 final orthoimages
with a 6 mm FSD.

Figure 6. South facade of the Church of San Segundo in Avila (Spain) (left) and a sketch of the
acquisition setup with the different sensor’s stations (MCA6-multispectral camera, FARO Focus3D)
(right).

Figure 7. Set of 7 orthoimages of the fagade in reflectance values from the two analyzed sensors (MCA6
multispectral camera and FARO Focus3D) and a false colorcolor composite orthoimage.

3.1. Reflectance Orthoimages

In order to compare the discrimination capability of both technologies to distinguish building
materials and pathologies a first unsupervised classification of the orthoimages belonging to each
sensor was performed (Figures 8 and 9). A final supervised classification with the complete set of
7 orthoimages was carried out. For each informational class manually representative areas distributed
throughout the facade (between 5 and 10 polygons per class) were selected. This last classification
serves as a reference with which to compare each individual unsupervised classification. The steps
followed by the workflow are shown in Figure 1.

Figure 8. Mini MCA6 map for the 5-clusters unsupervised classification.
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Figure 9. FARO Focus3D map for the 5-clusters unsupervised classification.

3.2. Orthoimages Classifications

Ten predefined clusters were used in each case for the unsupervised classification algorithm.
In all of them, the resulting map showed the existence of affected areas. Post-analysis reduced the
number of clusters. The number of clusters decreased from 10 (initial clusters) to 5 thematic classes
with real meaning: (1) unaltered granite; (2) altered granite; (3) wood (door of the church); (4) areas
with moisture evidences (caused by capillarity or filtration water) and (5) mortar between blocks.

It is noteworthy that results from Mini MCAG®6 are not fully satisfactory due to large variability
in lighting conditions during the data acquisition. As mentioned at the beginning of Section 3, the
fieldwork took place on 27 July 2012, with a 6-h total acquisition time. Although radiometric calibration
reduces the effects of the lighting variability between different data acquisition time, passive sensors
are really sensitive to shady areas. These areas could be seen in Figure 7, specifically in the orthoimages
from the Mini MCAS6, and also in the classification results of the entrance area in Figure 8 (blue color).
However, this is not the case for the active sensor, FARO Focus3D, where the continuity of materials
and pathologies is a remarkable aspect.

Comparing the results with a visual inspection, results correspond quite well to reality for both
types of existing granites (unaltered and altered) and wood by three well differentiated clusters in all
classification maps (Figures 8 and 9). Regarding pathologies detection, it was not possible to draw
final conclusions with these first unsupervised classifications. However, this process served to perform
a better defined supervised classification.

With the aim of having a reference with which to compare both unsupervised classification
maps, a supervised classification of the full set of 7 orthoimages in reflectance values was performed
(Figure 10) taking into account the two existing variants of granite, their pathologies derived primarily
from moisture and the other informational classes.

The best overall accuracy for the Fuzzy K-means unsupervised classifications was 74.39%,
achieved for the FARO Focus3D map in contrast with the 66.04% accuracy for the Mini MCA6 map.
This indicates that the best correlation between the number of pixels correctly classified and the total
number of pixels occurred for this near infrared active sensor.

Table 2 contrasts the results of the supervised classification (based on training areas) with the
unsupervised classification for each sensor. The table shows the sum of pixels belonging to each class
for each of the classifications performed. The count is expressed as a percentage of the total number of
classified pixels (1,154,932 without taking the background class into account).
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Figure 10. Multisensory map for the 5 informational classes supervised classification.

Table 2. Pixels computation belonging to each thematic class.

Class Reference Map  Multispectral Map  Laser Map
Unaltered granite 30.04% 28.53% 27.33%
Altered granite 42.60% 48.06% 47.27%
Wood 5.35% 5.67% 5.82%
Moisture 1.88% 4.74% 1.31%
Mortar 20.13% 13.00% 18.27%

In a quantitative analysis for the estimation of the two types of granite and wood, results of both
sensors are quite similar and really close to the reference map while intensity data from laser scanner
are the closest to the reference map results for the estimation of moisture and mortar. Results show
higher pixels classified as moisture in the case of multispectral map (2.86% higher with respect to the
reference map) and few pixels classified as mortar (7.13% lower than the reference map) due mainly
to the altered granite count (whose spectral response has the greatest similarity). Results from the
laser sensor are quite similar, greater amount of altered granite by reducing the unaltered granite and
mortar detected classes. Note that the best results for moisture detection are achieved with the FARO
Focus3D, since humidity has a major interference with this wavelength [40]. Since the pathological
classes (moisture and altered granite) are better recognized by the laser scanner and it is the most
comprehensive sensor with results closer to the reference, it can be concluded that the active sensor
has proven to be the best option to study and detect pathologies and different construction materials
for studies with high variability in light conditions where passive sensors are greatly affected.

To evaluate the separability between classes the transformed divergence indicator [41], ranging
from 0 to 2, was used as the most widely used quantitative estimator for this purpose [42]. Table 3
shows the separability between the final 5 classes.

Table 3. Transformed divergence for the supervised classification.

Unaltered Granite  Altered Granite = Wood  Moisture

Altered granite 1.87 - - -

Wood 2.00 2.00 - -

Moisture 1.99 1.99 2.00 -
Mortar 1.98 1.42 2.00 2.00
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In general, a high separability was achieved for all 5 classes, highlighting the good separability
between the spectral signatures of the two granite types. The worst results were for the mortar and
the altered granite classes. This fact is explained by two reasons: on the one hand, the facade sample
distance (FSD) of the orthoimages (11 mm in the worst case) was not enough to detect fagade areas
with smaller thickness of mortar; and on the other, altered granite class presented the closest spectral
behavior regarding mortar. With respect to the moisture of the fagade, it appeared in lower areas of
the shrine (capillarity rising damp) and in the buttress, acting as a filter system for the water from the
roof (filtration moisture). These areas are built with unaltered granite blocks since lower areas need to
support the loads of the whole building (also in buttress). The radiometric misunderstanding between
moisture and unaltered granite did not occur in the case of altered granite since the latter is part of the
center of the fagade, a low humidity area.

3.3. Accuracy Assessment

In order to assess the accuracy of the unsupervised classifications, the supervised classification
approach based on maximum likelihood algorithm served as reference. Five classes and the seven
bands available were considered in the classification process. Accuracy results for the case of the Mini
MCAG6 multispectral camera and the FARO Focus3D laser scanner were 66.04% and 74.39% respectively
as mentioned above, and according to the Cohen’s Kappa coefficient [43] the level of agreement was
0.50 and 0.621 respectively (excluding the null class).

Furthermore, as mentioned in Section 2.1, an ASD FieldSpec3 spectroradiometer was used to
measure several samples of granite for a parallel study. Those measures, in this study, have been used
as reference and as a complement to the above analysis to compare the spectral signatures of these
construction materials with the discrete reflectance results obtained from the Mini MCA6 and the
FARO Focus3D (Figure 11). The spectral signatures and deviations of the two types of granite present
in the fagade are plotted for the wavelength range covered by both sensors (530-905 nm).

In Figure 11, the graph continuous lines show at any wavelength the mean value of the
reflectances of unaltered and altered granite samples distributed along the fagade and measured
with the spectroradiometer (a total of 6 and 7 samples of granite, respectively). On the other hand, the
colored areas represent the standard deviation of that spectroradiometer measurements. Regarding
the discrete values of reflectance achieved with the sensors (discrete points) they result from the mean
reflectance value of the “unaltered granite” and “altered granite” classes for each sensor’s wavelength
of the supervised classification map. The “mortar” class was not finally evaluated due to its variability
in thickness along the fagade and due to the fact that the FSD achieved was in many areas greater than
its thickness.

It should be mentioned that a great fit of the reflectance values from both sensors (discrete
points) was achieved for both granite real spectral behaviors (spectroradiometer measurements)
with admissible standard deviations associated (lower than those associated with spectroradiometer
measurements). For both evaluated materials, the mean error was 0.007 (in the range 0-1), being the
maximum 0.049 (in the range 0-1), which is better than the expected error for this vicarious calibration
technique (around 5%).

The confusion matrices for the assessment of both sensors are shown in Tables 4 and 5 where the
main diagonal indicates the percentage of pixels that have been correctly classify and the off-diagonal
values represent misclassification. The producer and user accuracies as well as the overall accuravy
are given. Regarding the moisture class, a significant performance improvement of the classifier is
observed for this class for the operating wavelength of the FARO Focus3D. In the case of the mortar
class, the Mini MCA6 do not bring good results mainly due to the errors produced during the 6-band
registration process. Finally, we mention that in the case of the unaltered and altered granites, little
variations were observed between both sensors.
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Figure 11. Spectral signatures of the two different types of granites, (a) unaltered and (b) altered,
measured with the ASD spectroradiometer for the wavelength interval covered by the sensors used
(Mini MCA6 and FARO Focus3D) where points are obtained from the orthoimages in reflectance values.

Table 4. Confusion matrix of the Mini MCA6 unsupervised classification.

Moisture Mortar  Altered Granite  Unaltered Granite Wood User Accuracy

Moisture 40.14% 25.40% 0.54% 33.92% 0.01% 40.14%
Mortar 0.06% 39.11% 59.53% 1.31% 0.00% 39.11%
Altered granite 3.79% 7.69% 73.86% 14.61% 0.05% 73.86%
Unaltered granite 6.56% 5.30% 16.39% 70.75% 1.01% 70.75%
Wood 0.00% 0.00% 0.00% 0.00% 100.00% 100.00%

Producer accuracy 21.10% 57.71% 66.00% 74.28% 94.26%
Overall accuracy: 66.04%

Table 5. Confusion matrix of the FARO Focus3D unsupervised classification.

Moisture Mortar  Altered Granite ~ Unaltered granite Wood User Accuracy

Moisture 52.46% 1.04% 23.17% 19.81% 3.52% 52.46%

Mortar 0.00% 60.46% 37.36% 2.18% 0.00% 60.46%

Altered granite 0.05% 12.81% 78.29% 8.64% 0.20% 78.29%

Unaltered granite 0.29% 1.49% 21.70% 75.47% 1.04% 75.47%

Wood 0.48% 0.00% 0.00% 0.00% 99.52% 99.52%
Producer accuracy 89.64% 68.32% 68.68% 83.62% 91.81%

Overall accuracy: 74.39%

To conclude, it should be highlight that the improvement in both the overall accuracy and the
Kappa coefficient is significant in the case of working with radiometrically calibrated sensors as
opposed to the use uncalibrated ones [17]. The results for the Mini MCA®6 have experienced a 24%
improvement in terms of overall accuracy and 23% regarding the Kappa coefficient. Furthermore, the
improvement from the use of the calibrated FARO Focus3D was of 29% and 35% regarding the overall
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accuracy and Kappa coefficient, respectively. Results worsen in the case of the Mini MCA6 due to two
factors; the first is that the camera is a passive sensor, so it is sensitive to changes in light conditions
and shadow areas during data acquisition. The second error factor is caused by the slave image
registration process, as has been mentioned above, due to the errors in the determination of baselines,
angular misalignments and the internal parameters of the camera. Any error in those parameters is
propagated into the final multispectral orthoimage, being worsened for higher spatial resolutions,
where the geometric pixel footprint in the object may differ depending on the wavelength.

4. Conclusions

The work presented in this paper shows a comparison of the classification results from the use of
different radiometrically calibrated sensors to detect pathologies in materials of historical buildings
fagades. By combining the use of two different data acquisition techniques (active and passive), two
sensors were examined: a multispectral camera and a 3D laser scanner. The results show the different
radiometric responses of the ashlars of a church with different damages levels (mainly moisture).
The classification algorithms used for the classification processes were the Fuzzy K-means and the
maximum likelihood classification algorithms.

A complete description of the workflow followed is outlined describing the data acquisition,
pre-processing (including sensors radiometric calibrations), orthoimages generation and the
application of two classification algorithms to assess the final results. Our results show that the
most comprehensive sensor for which the best results were obtained is the FARO Focus3D. This is
possibly due to the advantage of working in an active way with no need of external radiation.
As aresult, classification maps were not affected by different lighting conditions during data acquisition.
Furthermore, geometric models of the study object can be derived thanks to its data capture. With these
models, physical pathologies (such as fissures, desquamations, efc.) could be analyzed and both these
damages and chemical pathologies could be quantified. However, for the challenge of the registration
of 6 wavelength bands, the results from the Mini MCA6 were quite good. Considering all those issues
and with the experience of working with these sensors in previous studies, it is concluded that the
radiometric calibration of the sensors is crucial since it contributes to improving the accuracy of the
outcomes (a 35% Kappa coefficient improvement in the case of the FARO Focus3D). Thus, a sensor
combination with laser scanning as a primary choice is the best solution for pathology detection and
quantification. By adding the intensity information to visible or multispectral information, results of
classification improve in a quantitative and a qualitative way.

In future work, the use of a hyperspectral camera or another laser scanner operating in
the shortwave infrared as a complement of the sensors proposed will improve the pathologies
detection and the overall accuracy results since the spectral resolution of the study would be
increased. In addition, and for non-carved historical buildings, the roughness of the facade would
be calculated from the scan points in order to have additional data of the materials so it can help in
the discrimination process. Finally, and regarding the data acquisition of passive sensors, constant
favorable climatic conditions will be planned so that the accuracy of its classification results may be
significantly improved.
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4.2. Automation in the moisture detection process in
concrete structures by integrating different
Sensors

This section contains the paper Automatic mapping of moisture
affectation in exposed concrete structures by fusing different wavelength
remote sensors, published in the high impact journal Structural Control
and Health Monitoring in November 2015.

4.2.1. Abstract

The main objective of this paper was to analyse the feasibility of
automating the inspection of moisture in concrete structures through the
analysis and processing of multispectral data from multiple sensors. A
total of four sensors, two active laser systems and two passive digital
cameras (one standard and one multispectral), were analysed covering
the visible, near and short wave infrared ranges. In order to automate the
process, the radiometric calibration of the sensors was dismissed. Thus,
raw data in digital levels was analysed simplifying the acquisition and
processing of data. In addition, automatic image classification algorithms
were used to analyse the results minimising human interaction.

Sensor fusion was achieved after several geometric data transformations:
(1) processing of 3D point clouds from laser scanners to 2D orthoimages
and (i1) correction and registration of images from the two passive
sensors. Finally, and after applying an automatic unsupervised
classification methodology, it was possible to analyse different levels of
moisture and results were subsequently contrasted with the visual
inspection offered by an expert.

After this study it is conclude that while passive sensors offer greater
spectral resolution than that offered by lasers scanners (mono-spectral),
the latter gave best results even when the radiometric calibration was not
applied. This is because they are sensors less influenced by changes in
light conditions between consecutive shots. However, for these devices a
decrease in the returned signal proportional to the square of the
acquisition distance occurs and data should be corrected from that. After
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an analysis of variance, it was determined that the most suitable range for
moisture detection is the infrared, specifically the 778, 905 and 1550-nm
wavelengths noting that best results were obtained for the short wave
infrared (1550 nm). After this research work, the automation in the
detection of different moisture levels in concrete structures using non-
calibrated sensors was validated (for the intended purposes of this work),
preferably for those working in the infrared range. In addition to the
detection of different levels of humidity, and thanks to the use of active
sensors, it was possible to quantify these degrees of surface moisture.
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4.3. Theory of the multispectral imaging and its
application to the assessment of construction
pathologies

This section contains the chapter Multispectral imaging: fundamentals,
principles and methods to damage assessment in constructions of the
book Geotechnologies for the Reverse Engineering of Structures and
Infrastructures published as a volume of the series Structures &
Infrastructures for the editorial CRC Press/Balkema of the Francis &
Taylor group in December 2015

4.3.1. Abstract

This book chapter highlights the versatility and potential of multispectral
images for the diagnosis and evaluation of pathologies particularized for
the case of construction materials. Through a theoretical review by the
fundamentals, principles and methods, it is possible to acquire the basis
for both the technical knowledge and the processes to get efficient and
cost effective damage assessments. There is also a subsection devoted to
the optimal choice of sensors depending on each specific case study,
required resolutions, cost, time, etc. Moreover, it highlights the
importance of converting the captured raw data to physical quantities to
improve classification results by reducing the automation of the process.
To that end, there is a specific subsection that provides advice and best
practices for both the radiometric calibration and the sensory registration
for a wide range of sensors. In conclusion, it can be said that
multispectral systems allow the generation of hybrid mapping products
really useful to the experts in construction materials. Multispectral
imaging becomes a valuable tool for both detect and quantify pathologies
by using non-parametric statistical methods being this technique very
convenient for the decision making and maintenance processes in this
regard.
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Multispectral Imaging: fundamentals, principles and methods to
damage assessment in constructions

S. Del Pozo, L. J. Sanchez-Aparicio, P. Rodriguez-Gonzalvez, J. Herrero-Pascual, A.
Muiioz-Nieto, D. Gonzéilez-Aguilera

Dept. of Cartographic and Land Engineering, High School of Avila, University of Salamanca, Avila,
Spain

D. Hernandez-Lépez
Regional Development Institute-IDR, University of Castilla-La Mancha, Albacete, Spain

ABSTRACT: Nowadays, the knowledge and maintenance of constructions has become a high-
priority task for private and public institutions, largely due to the development, economy and
cultural heritage that these constructions represent. The prevention, rehabilitation and restora-
tion processes in constructions involve, among other task, the pathological analysis and assess-
ment of building materials. To this end, it is important to perform qualitative analysis in some
particular areas of the structure under consideration such as X-ray inspections or petrographic
tests. This information is then extrapolated to the rest of the construction surface. Taking into
account the above, and within a non-intrusive context, this chapter aims to provide readers the
theoretical information necessary to carry out the diagnosis of pathologies in constructions by
multispectral analysis.

1 INTRODUCTION

From early constructions to the sophisticated different architectural styles such as the Rom-
anesque, Gothic or Neoclassical without overlooking the vernacular and the modern architec-
ture, the choice of building materials has had a relevant role in constructions. The choice of the
ideal material to be used (either for aesthetic reasons, workability, load-bearing capacity or
availability) represents one of the most important decisions to be made. Besides, understanding
how such material becomes degraded, its pathological state and evolution over time are una-
voidable tasks in the conservation of buildings.

It is therefore crucial to establish a direct relationship between the pathological state of
buildings and their conservation that should be addressed from a multidisciplinary approach
that encompasses the use of different disciplines and types of sensors (Sanchez-Aparicio et al.
2014, Moropoulou et al. 2013).

In recent years, the use of multispectral data and different remote sensing techniques has
drawn much attention focused on the classification of multispectral images. This product, de-
fined as a set of data, in different regions of the electromagnetic spectrum, extracted from one
or more sensors (active or passive) and assessed in the form of a 2D image offers decisive ad-
vantages and represents a new horizon for the analysis of building pathologies (Del Pozo et al.
2015, Gonzélez-Jorge et al. 2012, Armesto-Gonzalez et al. 2010).

In light of the foregoing, chapters VII and XIII aim to provide a complete overview (theoreti-
cal and practical) of the pathological study of constructions through the analysis of multispec-
tral images. Under the same methodological framework, relevant aspects for the knowledge and
conservation of buildings, as those listed below, have been taking into account:
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Flexibility: understood as the applicability of the methodology presented, using data from
both passive (conventional, multispectral or thermal cameras) and active sensors (laser scan-
ning systems, microwave systems, geo-radar, tomography, etc.).

Versatility: directly related to the diversity of applicable sensors. Thanks to them and to the
methodology proposed it is possible to differentiate a broad variety of construction materials
and detect possible pathologies affecting them.

Safety: ensured because robotic platforms (terrestrial or aerial) are used allowing the imple-
mentation of this methodology in buildings whose structural integrity is in doubt and there is an
increased safety risk to operators, and even in areas of difficult access (roofs, tops of towers,
etc.).

Non-invasiveness: that is crucial in the maintenance and preservation of buildings. This
property becomes more relevant in the case of historical buildings, where the main priority is to
maintain the originality of their design.

Scalability: One of the most important properties of the technique discussed in this chapter
lies in its ability to assess large-scale data, that can be defined as the analysis over large areas or
even complete fagades, unlike conventional methodologies for the study of pathologies con-
fined to small localized areas.

After mentioning the most relevant characteristics of the methodology, among which high-
light the abundance of geometric and radiometric data and the ability of analyzing large areas, it
is logical to imagine that such methodology must occupy and important place in variety of en-
gineering applications; more specifically preventive conservation and reverse engineering, as
will be discussed below.

1.1 Relation of the multispectral imaging with reverse engineering

Traditional engineering uses methods and techniques for the planning, design manufacturing,
testing and production of different objects where each process is carried out separately and the
workflow is only in one direction.

By contrast, reverse engineering attempts to obtain information referring to a real object in
order to analyze and improve it. This analysis encompasses the study of manufacturing defects,
building materials, its operation and other aspects, such as its design and geometry, which must
be taken into account for improving it.

In short, reverse engineering tries to re-document objects as computer-aided design (CAD)
models, graphics or maps in order to improve and optimize the final article of the production
chain. Sometimes it is even possible to manufacture a new one including the improvements in
quality on it.

Reverse engineering applied to constructions has the main goal of collecting and compiling
all the information referring to the characteristics of building materials, type of construction,
geometry, structural behaviors, identification of possible pathologies and technical documents
(work plans at different scales, sketches, etc.) to gain an exhaustive and comprehensive
knowledge of the building for its reconstruction, rehabilitation, restoration or improvement of
energy efficiency.

Degradation and alteration phenomena affecting building materials are the result of complex
pathological processes. However, they all follow the same trend: (i) an origin; (ii) an evolution,
and (iii) a final consequence. An exhaustive knowledge and quantification of the degradation
process allows acquiring a new comprehension level of the construction. At this level it is pos-
sible to develop and apply preventive, restoration and rehabilitation measures.

The principles of the methodology discussed in this chapter are based on reverse engineer-
ing. First, a detection of pathologies (final consequence) is performed; then, ways of patholo-
gies evolution are studied and finally, a rigorous evaluation of the causes with the support of
the cartographic products generated is pinpointed. This is why the approach attempts to obtain
the information referring to the real object, in this case the construction, in order to obtain a
causal analysis. The essential requirement is thus to have experience in building materials and
construction techniques, how different materials degrade and also knowledge on techniques ca-
pable to quantify such kind of construction damages (Fig. 1).

133



Multispectral imaging for the analysis of materials and pathologies in civil engineering,
constructions and natural spaces

134



Chapter IV. Sensor fusion applied to civil engineering and cultural heritage

2.1 Principles of radiation

In wave theory, electromagnetic radiation is described as a propagation phenomenon in which
energy travels at constant speed (C) (the speed of light) and can be described by two parame-
ters, the frequency(v) and the wavelength (1), being:

C=v-A M

In turn, Plank’s quantum theory explains how electromagnetic energy interacts with matter
and that radiation is composed of discrete particles called photons or quanta, whose energy is
described as:

O=hv 2)

Where £ is the Plank’s constant (6.626x10™*J/second) and v is the frequency. Replacing v
according to the Equation 1, we have:

Q=h-C/A 3)

This expression indicates that the energy of a quanta becomes smaller as wavelength increas-
es and is, therefore, more difficult to be detected.

2.2 Energy interactions with materials

The electromagnetic energy detected by a sensor crosses the atmosphere before being recorded.
Since the atmosphere is a body with variable composition and characteristics, during its passage
it may suffer many alterations. This fact is of great importance in the case of multispectral sat-
ellite sensors because the solar rays have to cross the whole of the atmosphere. Nevertheless, in
the present context since the distance between the sensors used and the objects are very small (a
maximum of 100-200 m), the atmospheric effect can be considered negligible with respect to
the levels of precision we are working at.

It is therefore appropriate to focus on the interaction processes that happen when electro-
magnetic energy impinges on the different surfaces and materials. All this can be explained via
the principle of the conservation of energy, according to which the incident energy is reflected,
absorbed or transmitted by the different covers and depends on the wavelength considered
(Equation 4).

E(D)=E(D+E,(DH+E) “

where E;(1) is the incident energy, E.(2) is the reflected energy, E,(4) is the absorbed energy,
and E,(4) is the transmitted energy.

The share of energy reflected, absorbed and transmitted by the same material depends not
only on its composition and current condition but also on the wavelength at which it is ob-
served. Thus, by using multispectral sensors, it is possible to distinguish different states, char-
acteristics and properties of the same material at the same time.

From all the types of energy described in Equation 4, multispectral sensors are specialized in
observing the proportion of energy reflected. In order to study it, it is important to bear in mind
the way objects reflect, that is the geometry of the reflection. Essentially, it depends on the
roughness of the object surface. Thus, it is possible to distinguish two types of ideal reflectors
(Fig. 2a): the specular type, where the angle of incident radiation is the same as the angle of re-
flect radiation; and the diffuse or Lambertian types (on rough surfaces), in which the reflection
is uniform in all directions. However, in practice, these cases are not seen and the reflection is
mixed between these two ideal cases.

135



Multispectral imaging for the analysis of materials and pathologies in civil engineering,
constructions and natural spaces

136



Chapter IV. Sensor fusion applied to civil engineering and cultural heritage

137



Multispectral imaging for the analysis of materials and pathologies in civil engineering,
constructions and natural spaces

138



Chapter IV. Sensor fusion applied to civil engineering and cultural heritage

= Internal factors (composition, structure, and texture). Knowledge of the internal
properties of each material used allows choosing the most suitable one. A wrong
selection of a material may lead to its rapid degradation.

= External factors as environmental conditions (frosts, rains, etc.), its use and its
maintenance.

The following external factors must be taken into account:

- Physical damage due to environmental phenomena. Highlighting :

= Humidity: an excess of water, greater than admitted by the construction material,
causes physical variations of the materials (humidity during construction, capillari-
ty, leaks, condensation and other accidental factors).

= Erosion: the loss of surface or modification of materials due to the action of at-
mospheric agents that produce weathering.

= Pollution: this leads to dirtiness on fagcades owing to the deposition of suspended
particles in the air. If the particles are simply deposited, the result of dirtiness is
due to deposition, but if they enter the pores of the surface the dirtiness is caused
by differential washing that cause characteristic marks on surfaces.

- Chemical damages. Caused by the appearance of salts or exposure to acid or alkaline
environments, which react with the construction material and lead to its decomposition
and degradation. The following factors are the most important:

= Efflorescence. The soluble salts contained in the construction material are dis-
solved in the water of humid parts showing as a white chalky deposit on the sur-
face. The crypto-efflorescence is also very important and it is refers to crystallized
salts that are formed inside the material, leading to hollows and later detachment
of the material.

= Oxidation and corrosion. These processes occur on metals such as iron and steel
due to electrochemical reactions between the metal and the external elements of its
surroundings. This may lead to a progressive loss of materials from the surface of
the construction.

= Organisms. This refers to living beings, either animal or vegetal, which can secrete
aggressive substance that can degrade and alter the construction materials (moulds
and fungi) and also can penetrate the surface (insects, roots, etc.) causing physical
damage.

= Erosion due to chemical factors can cause molecular transformations in the materi-
als by reacting with other elements.

It is important to note that after gathering an exhaustive data collection referring to the con-
struction, it is necessary to perform a rigorous data acquisition to study the degradation level of
the materials. In the data acquisition, and depending on the specific pathology, greater or lesser
importance should be given to geometric aspects (the assessment of deformation, mechanical
erosion, etc.) and to qualitative (X-ray, the use of reagent, etc.) and quantitative analysis (multi-
spectral image studies).

If it becomes necessary to get an in-depth knowledge of the construction materials, their
properties and associated pathologies, readers are invited to consult (Watt 1999), as well as the
technical legislation for construction associated to each country.

3 ACQUIRING MULTISPECTRAL DATASET

The concept of multispectral image is traditionally associated with the concept of data captured
by a single remote sensor (multispectral cameras) capable of recording information at various
wavelengths at the same time (Campbell 2002). This section aims to provide a more compre-
hensive view of this concept, opening the possibility of acquiring multispectral datasets by the
combination of data coming from different types of sensor, whether passive (visible, infrared,
and thermal cameras) or active (laser scanners).

A multispectral dataset is essentially made up of a matrix of numerical values called digital
levels that come from the analogic-digital transformation of the electromagnetic energy reflect-
ed by the surface of the object observed (Jones et al. 2010). The value of the digital level corre-
sponding to a pixel is proportional to the intensity of the radiance (W-m sr -nm ') reflected
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To understand the whole concept of the resolution of a sensor, four concepts need to be con-
sidered:

- Radiometric resolution: Number of digital levels in which the intensity of the signal
(radiance) is recorded. Since radiance is stored as a number of binary bits, the greater
the number of storage bits of the sensor, the greater the radiometric resolution. For
temperature sensors, the radiometric resolution is often converted to the equivalent
thermal resolution. The most commonly used sensors for spectral studies of construc-
tion materials have radiometric resolutions ranging between 8 and 12 bits, (256 to 4096
different digital levels).

- Spatial resolution: Size of the ground element represented by an individual pixel. This
is usually determined by the optical system of the sensor used to capture the data and
by the distance between the sensor and the object (scale). The ground sample distance
(GSD) is equivalent pixel size on the ground and is defined in Equation 6.

d-S
GSD==—= (6)
f

where d being the distance to the object; S is pixel size and f is the camera focal length.
If the sensor-object distance (d) is reduced very much, it may be possible to achieve
sub-millimeter resolutions by the use of devices with large focal lengths and sensors
with a very small pixel size.

- Spectral resolution: The ability of a sensor to define wavelength intervals and hence to
discriminate between different component wavelengths in the scene; it is determined by
the number and width of the individual spectral bands recorded.

- Temporal resolution: The time between successive data captures. It makes sense in sat-
ellite imagery and ground-based monitoring case studies to analyze the state of the ob-
ject under study along time. It is vital for predicting maintenance strategies in order to
prevent the degradation of building materials and to prioritize different stages of possi-
ble rehabilitations.

Below, a variety of sensors ranging from the mono-spectral to multispectral types are dis-
cussed in detail. As already mentioned, the data from all of them can be combined to form a
multispectral dataset with more valuable information.

Sensing instruments

The most common classification of sensors categorize them in two main groups. Namely
passive and active sensors, depending on whether they require or not an external energy source
to recover information (Tsang et al. 1985). All can be fixed or loaded onto a large variety of
platforms for the acquisition of data around the object of interest (from hand-held platforms at
ground level to unmanned aerial systems, aircraft and satellites). In practice, and particularly in
the case of constructions, the most widely used platforms are those that allow the sensors to be
fixed and make a controlled capture to be made at ground level, and in some cases from above
the ground, by the use of drones several meters above the structure. The platform chosen de-
termines the position of the sensor in the data collection and the theoretical spatial resolution as
long as a distance to the object is fixed.

- Passive sensors. Passive sensors need an external energy source. The Sun acts as a nat-
ural source of radiation and the energy reflected by the different construction materials
is captured passively. The energy that is naturally emitted in the specific case of ther-
mal infrared can be detected in the daytime or night, as long as the amount of energy is
large enough to be recorded. Since light is crucial for passive optical sensors, it must be
ensured that the light will be as uniform as possible during data acquisition. These sys-
tems are made up of photo-detectors or thermal detectors sensitive to the electromag-
netic radiation at wavelengths ranging from the visible spectrum to the infrared and
their corresponding filters. There are two possible configurations for the case of photo-
detectors. Those called CCD (Charge-Coupled Device) and CMOS (Complementary
Metal-Oxide Semiconductor) (Magnan 2003). Both comprise metal-oxide semiconduc-
tors distributed in matrix form and they accumulate an electric charge for each pixel
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proportional to the intensity of the incident radiation but differ in method of reading the
electric charges; different advantages and drawbacks are inherent to both. Thermal de-
tectors use a different kind of technology based on the absorption of the heat energy
emitted by the object being studied. Except for thermographic cameras, the use of fil-
ters adds the possibility of selecting the bands of the spectrum at which the best charac-
terization of the object to be studied can be achieved. Below are images of the passive
sensors most widely used for the spectral analysis of construction materials (Fig. 6a).

Figure 6. Examples of sensors used in the inspection of constructions: (a) active sensors, (b) passive sen-
SOIS.

= Consumer-grade/reflex digital cameras (Visible region 400-700 nm)
The lens is the element of cameras that is used to focus the light reflected onto the
photoelectric detector. For the inspection of constructions, high geometric and ra-
diometric resolutions and the use of high-quality lenses is required. The main ad-
vantages of consumer-grade digital cameras are their convenience, portability
(weights of 150 g or even less) and low cost. Unfortunately, however, these sen-
sors come with a number of features which have adverse effects on remote sensing
applications. The final product of these sensors is color images. To generate these
images, an optical filter is coupled to the photoelectric detector (normally CCD) in
order to obtain the three primary colors (red, green and blue), which combined in
different proportions cause the sensation of color. This filter is known as a Color
Filter Array (CFA) mask, or Bayer filter mosaic, and in it four original pixels from
the detector are required to generate each color pixel, with the consequent loss of
spatial resolutions (Lu et al. 2003).

= Multispectral cameras (From visible to short-wave infrared — SWIR — region 400-
3,000 nm)
Multispectral sensors are the only passive systems able to record information sim-
ultaneously in a few bands of the spectrum. The main problem with these systems
is how to achieve multispectrality and the correct synchronization of all the ele-
ments involved. There are several configurations that can be used to do this. On
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the one hand, the integration of several lenses (photo-detector plus optical filter) in
a single device (such as the case illustrated in Fig. 6), where each lens records in-
formation for the spectral band permitted by its filter. On the other, there are the
cameras that achieve multispectrality using a single photo-detector and a ring of
filters that, by means of small, rapid rotation, fixes the required input filter. The
advantage of these over the former is the absence of eccentricity between the dif-
ferent captures; in this case the multispectral image is conformed almost immedi-
ately with no need for parallax correction (distance between the lenses). In this
case, the geometric corrections and the correction of systematic errors (Del Pozo et
al., 2014) are made only for the existing lens, such that time can be saved. By con-
trast, they have the important drawback of not being able to capture the multispec-
tral dataset at the same moment of time.
= Thermal cameras (Thermal infrared region 8,000-15,000 nm)

Any object with a temperature higher than absolute zero (-273 °C or 0 °K) is able
to emit infrared energy. The cameras included in this group allow the temperature
of the object studied to be obtained at a given distance, without the need to estab-
lish physical contact with its surface. Thanks to the thermal detectors incorporated,
they capture the infrared radiation belonging to the radiation emitted by different
surfaces and convert this into electrical energy. This electrical energy is translated
into a digital value, finally providing the so-called thermographs or thermal imag-
es, from which is it is possible to derive the temperature for each pixel.

- Active sensors. These provide their own source of radiation for illumination. They emit
radiation, which is directed toward the surface to be investigated. The radiation reflect-
ed from that target is detected and measured by these sensors. One of the most widely
used sensors for the radiometric and spectral study of materials is the terrestrial laser
scanner.

= 3D laser scanners
Three-dimensional laser scanners are of standard use in the geometric documenta-
tion of constructions and buildings since they allow real objects to be reconstruct-
ed in three dimensions with high spatial resolution in a short period of time. Use of
this type of sensor for the creation of multispectral dataset needs data processing to
perform the required transformations and obtain 2D images from 3D information.
These are active systems, generally narrow-band mono-spectral that emit a series
of laser pulses in all spatial directions thanks to deflector mirrors, after which the
returning beam is captured, obtaining 3D information of the element studied. In
some cases they have cameras, such that as well as the above-mentioned intensity
it is possible to extract information about the visible range of the object. These
sensors do not need to be in contact with the structure, which is a key factor in the
documentation of constructions and buildings where techniques that might degrade
the construction material have been ruled out. One of the greatest advantages of
this type of sensor is the possibility of combining the geometric and radiometric
information provided so that the pathologies detected in the construction materials
can be characterized.
The physical principles on which the system of distance measurement is based (op-
tical triangulation, time of flight and phase shift govern the range and precision of
the laser. There are different configurations and models, and we are now witness-
ing the evolution towards the design of increasingly rapid, light and precise sen-
sors. This variety of configurations allows different possibilities and functionali-
ties that are useful for many user needs. Figure 6b shows some of the laser
scanners most widely used for the documentation and characterization of the pa-
thologies found in construction materials.

3.2 Advise and best practices for multispectral data acquisition

Since there is a large variety of sensors that can be used to characterize possible pathologies in
constructions, the aim of this section is to offer a guide to good practices for the data acquisi-
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tion and ease data processing required to conform the final multispectral dataset. In chapter
XIII, where several study cases are discussed, conclusions may be drawn about the adequacy of
each of the sensors and their suitability for each situation and pathology. In the long run, the is-
sue is to perform a good planning of the data acquisition step in which the appropriate sensors
and criteria are taken into account

Below there is a list of the most important criteria to bear in mind in the general capture of
data (the use of both passive and active sensors) and for the particular use of optical passive
and thermal passive sensors.

Active and passive sensors:

- Distance to the object vs. spatial resolution. In this matter, it is necessary to bear in
mind that correct focusing of the object is crucial if we are to obtain clear, high-quality
results. Accordingly, it is necessary to take into account the field of view (FOV) of the
sensor. This will determine the total number of settings and hence the total duration of
final data acquisition.

- Surface uniformity. The more uniform the surface, the better the results obtained since
the radiation will be reflected in a diffuse and uniform way so fewer shadows will be
generated.

- Overlapping. With a view to obtaining a large amount of information, ease the matching
of geometries and ensuring the validity of the dataset, it is appropriate to establish cer-
tain overlapping zones between captures, whose amount may vary depending on the
particular study case.

- Number of settings. The greater the number of settings, the longer the time spent on ac-
quisition, the greater the amount of information and the greater the error propagation.
The general strategy consists of optimizing the number of stop settings, maintaining the
criterion of overlapping and solving the problem of masking and interferences that may
exist (object interposed, static and in motion).

Passive optical sensors:

- Homogeneous illumination. Care must be taken to prevent the surface studied from hav-
ing any kind of projected shadow, deriving either from the construction itself or from
some element outside it. Accordingly, it is recommended that measurements be taken
on cloudy days since these are when solar radiation is most uniform and diffuse.

- Time of data acquisition. Care should be taken to avoid the central hours of the day
when the variability in the radiation between illuminated and non-illuminated zones is
most pronounced. Also, maximum efforts should be made to avoid situations when
zone of shadow, hidden zones and zones with reflections arise. The ideal times are
therefore at dawn and just before dusk.

- Position with respect to the Sun. The reflection from a surface is a function of the angle
of view and depends on the proportion of specular and diffuse reflectance. The most
appropriate position, in cases where there is no homogeneous light, is the one in which
the Sun is immediately behind the device, so that the surface is completely illuminated.
It may be useful to note down the time and date of image capture in case it were neces-
sary to make any corrections later.

Passive thermal sensors:

- Thermal equilibrium. A specific thermographic data acquisition protocol is performed
to avoid surface heating by direct radiation from the Sun. In particular, images are ac-
quired before sunrise and after sunset. Thermographies are taken with the same focus
the camera is calibrated for, from an orthogonal position with respect to the fagade con-
sidered, maintaining a constant distance according to the resolution required and guar-
anteeing an overlap between adjacent thermographies.

4 MULTISPECTRAL DATASET CALIBRATION AND REGISTRATION

As a function of its composition and state each object reflects and emits radiation differently,
fulfilling the laws of physics (Section 2). Thus, the curve that describes the proportion of radia-
tion reflected as a function of the wavelength is known as the spectral signature (Fig. 3). Re-
garding emission, this is a function of the temperature of the object and will take place in the
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4.2 Registration based on multiple sensors

If the aim is to consider the three-dimensional geometry of the surface of an object onto which
the radiometric information of the different bands of the available images will be projected as
texture, the solution will lie in solving the General Method of Aerial Photogrammetry (Kraus et
al. 1993). But this methodology will have the added problem of the complex geometries present
in terrestrial scenarios. This methodology can be split into two large steps: (i) determination of
the position (spatial and angular) of the sensors, and (ii) reconstruction of the 3D geometry of
the object. Having determined the geometry and having resolved the positions of the sensors,
we shall be able to extract the radiometric values associated with the geometry of the object in
each of the spectral bands.

In order to relate the values of the image pixels of the images from the different sensors to
the corresponding points of the object observed, it is necessary to solve the internal parameters
and external position of the sensor, which includes the processes of internal and external orien-
tation respectively. The internal orientation solves the problems of the geometry in the sensor:
the optics and sensor plane, including models to obtain the focal length, the principal point and
the geometric distortion. The external orientation refers to the capture position and the orienta-
tion of the viewing axis.

The internal orientation can be solved by the process of geometric calibration of the sensors
(Luhmann et al. 2013), which can be done at the laboratory before the field campaigns. Alterna-
tively, the unknowns of internal parameters can be integrated in the adjustment of the external
orientation described below, in the method known as self-calibration.

The determination of the images external orientations is a classic problem of photogramme-
try, known as photogrammetric spatial resection, and this can be solved through the formulation
of a mathematical model (collinearity condition). This model involves points of the scene of
known position (Ground control points - GCPs), which are measured manually in the images,
and tie-points of unknown position on the scene , measured in the images automatically by ap-
plying algorithms belonging to computer vision, such as SIFT (Scale-Invariant Feature Trans-
form) (Lowe, 1999) or SURF (Speeded Up Robust Features) (Bay et al. 2006). However in cer-
tain cases tie-point detection can be completed by manual measurement. Solving this process
requires having sufficient overlap between the images. Although this method provides valid re-
sults in the case of images in the visible spectrum with sufficient overlap and image quality, in
the case of other regions of the spectrum it is a problem that currently remains to be solved
(known as multimodal matching). This is the case above all in the thermal infrared, owing to
causes such as insufficient overlap between images, radiometric variations due to changes in
perspective, low geometric resolution, poor definition in the images, a paucity of radiometric
variation between certain bands, etc.

Accordingly, as an alternative to the process of registration from a 3D point of view there is
the possibility of re-projecting the different images onto a common plane using a 2D projective
transformation (Hartley et al., 2003). The only proviso of this approach is that if the object
studied is not planar, variations due to relief will be generated and these will affect the subse-
quent metric analyses.

5 DAMAGE ASSESSMENT

The assessment of damage on fagades and civil constructions from multispectral images using
non-destructive/non-invasive technologies (Section 3), and the strategies of calibration and reg-
istration described (Section 4) will require the generation of hybrid mapping products. These
derived products can be: 2D (rectified images and orthoimages for visual interpretation, in true
and false color and for quantitative analysis in different regions of the spectrum-visible, infra-
red, thermal, etc.); 3D (models textured from images from different regions of the spectrum
similar to the 2D case depending on whether they are destined for visual or quantitative analy-
sis) and 4D (3D models that are comparable over time, in order to address monitoring process-
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es). They will act as input data in the application of different strategies of multispectral classifi-
cation and dimensional analysis, with a view to assessing possible chemical and physical pa-
thologies, respectively.

To accomplish the above, here we is proposed a specific methodology that will allow the fi-
nal user, using data acquired from several sensors, passive and active, multispectral and mono-
chromatic, to assess the pathological damage in different types of construction, either heritage
buildings (historical) or civil engineering constructions (infrastructures). The proposed meth-
odology can be broken down into three steps: (i) generation of hybrid cartographic products;
(ii) multispectral classification and dimensional analysis based on the hybrid products, and (iii)
assessment of the results obtained with graphic, numerical and statistical methods.

5.1 Generation of hybrid cartographic products

In view of the sensors that can be used (Section 3), photogrammetric methods and laser scan-
ning methods should be used; these will allow the generation of hybrid cartographic products.
Moreover, depending on the complexity of the object to be assessed, 2D cartographic products
in the form of image rectifications and true orthoimages, and 3D models that integrate any mul-
tispectral band as an additional value, will be considered. Regardless of their type, they can be
comparable over time in order to monitor the object. More specifically, when the assessment of
the pathological state refers to chemical aspects (e.g., the presence of salts, vegetation, etc.),
multispectral classification will be the procedure chosen to accomplish this goal. This classifi-
cation will use as input data correctly calibrated 2D images (section 4) and with a uniform scale
through the use of rectification and orthorectification procedures. It should be noted that this
multispectral image classification may be based on auxiliary information, which is sometimes
of great value, in the form of 3D or 4D models (multitemporal) that may help the classification
process, making the results much more robust. By contrast, when the aspect to be assessed cor-
responds to physical pathologies (e.g., cracks, detachments, structural changes, etc.), 3D and
4D models will be ideal for performing a dimensional analysis that will allow changes to be de-
tected, displacements and deformations to be assessed in the construction under study.

5.2 Multispectral classification and dimensional analysis

Image classification is a fundamental task in the analysis and exploitation of multispectral im-
ages. This is especially relevant when the aim is to reduce the complexity of a set of digital lev-
els belonging to different regions of the electromagnetic spectrum in different homogeneous
categories that represent different spectral clusters (spectral signature) or informational classes.
The aim here is the render the numerical values acquired by the sensor or sensors interpretable
via thematic maps. This process involves the conversion of a multispectral image into another
image of the same size and characteristics by means of the assignation of each of the pixels to
and informational and/or spectral category. To do so, two classification strategies are used, dif-
ferentiating between supervised and unsupervised classification:

- Supervised classification. This starts out from identification on the image (by an expert
user) of pilot areas, known as training polygons. These areas must correspond to, spe-
cific informational classes (material, chemical pathology, etc.) identified in situ or via
existing images and/or maps. These areas fulfill a dual role; on one hand, some of them
are used as a basis for the later segmentation process and, on the other, the others serve
as check areas for assessing the results of the classification. Both types of area must
show a certain degree of homogeneity and a balanced distribution in different zones of
the image so that they will cover different variations within the same informational
class. Based on a statistically study, an analysis of the viability of the differentiation
among the classes chosen is made. As a result of this analysis, it is possible to modify
(remove, fuse or split) the classes and select the spectral bands that best discriminate
the problem in hand. Finally, via the application of different segmentation algorithms
(Table 1) it will be possible to assign all the pixels of the image to one of the infor-
mation categories established.

Most segmentation strategies analyze pixels individually based on their spectral proper-
ties. However, there are more sophisticated approaches in which the neighborhood or
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context of several pixels is considered to adopt the criterion of segmentation. These
strategies take into account additional information (e.g., 3D model, multi-temporal ob-
servations, fusion of active sensors with passive-optical ones, etc.) and even parametric
and non-parametric strategies that allow segmentation tasks to be improved.

- Unsupervised classification: pursues the same aim but without requiring the interaction
of the user in the definition of the classes, because it is based on an automatic proce-
dure that looks for spectral clustering of the pixels. Finally, the user must analyze the
classes detected automatically to establish possible correspondences with the informa-
tional classes. The main problem of unsupervised approaches is that sometimes, the re-
sults are far from having a relationship with the thematic classes (materials, chemical
pathologies, etc.) being sought and there is no biunivocal correspondence between the
spectral clusters and informational classes. In these cases, it is necessary to use addi-
tional criteria such as modifying the legend, including additional non-spectral criteria
(e.g. textures, contextual information, 3D model, etc.) and multi-temporal information.

In view of the above limitations, it is usual to choose mixed classification strategies, which
first apply an unsupervised classification that will serve as a guide for a later supervised classi-
fication. In this way there will be a preliminary discretization of the image in its main spectral
classes that will act as a training phase for later application of the different segmentation strate-
gies according to the previously defined training areas of informational classes.

In order to synthesize the most significant algorithms in the field of multispectral image clas-
sification, the following table (Table 1) illustrates the most relevant segmentation algorithms
associated with each of the classification techniques and their strategies (point/area, paramet-
ric/non-parametric).

Table 1. Remote sensing image classification techniques (Li et al. 2014).
Classification
techniques

Characteristics Examples of classifiers

- Unsupervised (e.g. k-means, ISODATA, SOM,
hierarchical clustering).

- Supervised (e.g. Maximum likelihood, Mini-
mum distance-to-means, Mahalanobis distance,
Parallelepiped, k-nearest Neighbours).

- Machine learning (e.g. artificial neural network,
classification tree, random forest, support vec-
tor machine, genetic algorithms).

Each pixel is assumed pure
and typically labeled as a sin-
gle class.

Pixel-based
techniques

- Fuzzy classification, neural networks, regres-
sion modeling, regression tree analysis, spectral
mixture analysis, fuzzy-spectral mixture analy-
sis.

Each pixel is considered
mixed, and the areal portion of
each class is estimated.

Sub-pixel-based
techniques

. Geographical objects, instead - Image segmentation and object-based image
Object-based Lo . . . .
. of individual pixels, are con- analysis techniques (e.g. E-cognition, ArcGIS
techniques . . .
sidered the basic unit. Feature Analyst).

As a result of the multispectral classification a thematic map in pseudocolour will be obtained,
containing the spatial distribution of a given phenomenon such as the type of material and/or
chemical pathology associated with a given construction, which this thematic map will serve as
a basis for problem-solving and decision-making in different contexts.

Dimensional analysis and detection of changes constitute another tool used, in this case for
the analysis of possible physical pathologies (quantitative or qualitative) of the construction
under analysis. Its application may be made at 2D level (rectification, orthoimage) or at 3D/4D
level (multi-temporal models).
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tions. To achieve these goals, the three steps of any operation are discussed: (i) acquisition; (ii)
calibration of the data captured; and (iii) pathological analysis. Complementarily a theoretical
re-view, to ease the approximation at these systems for non-expert users, is presented.

According to the project analysis requirements, there are several factors to take into account
during the choice of the optimal sensor; mainly the spectral and geometric resolution. However,
it may counter with other operational factors such as cost and time, being the optimal solution
the combination of multispectral and/or mono spectral sensors. Data can be acquired by a dif-
ferent sensor, but requires additional considerations to ensure a perfect homogenization. More-
over, the conversion of the gather values into physical magnitudes is a critical step to classify
images of the building into different materials pathologies and damage levels. In this chapter
was shown the best practices to solve the sensor registration and radiometric calibration for a
wide range of sensors.

The multispectral systems presented allow the generation of hybrid cartographic products
valuable in the decision making process to experts in building materials, construction tech-
niques, etc., which can be extended for temporal analysis and maintenance purposes. And even
more important, it assesses the building damage quantitatively by the employment of non-
parametric statistical methods.
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5. CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

This Doctoral Thesis deals with the multispectral imaging analysis in the
visible and infrared region and based on the radiometric calibration of the
sensors used. The methodological procedure and the results have been
published in various impact journals as research scientific papers or book
chapters.

In this chapter a summary of the contributions including most relevant
results and the directions for future works are discussed. The following
conclusions can be drawn from the use of the sensors applied,
individually and jointly, in different fields of application.This section
contains the paper Multispectral radiometric analysis of fagades to detect
pathologies from active and passive remote sensing, published in the
high impact journal Remote Sensing in January 2016.

5.1.1. In general terms

= After the development of this research work, a high level of the
basis of spectrometry and radiometry as well as the analysis of
multispectral data procedures has been achieved. This knowledge
has been evidenced with the issues included in the published book
chapter (IV.3 section)

* In the field of remote sensing, there are two common radiometric
calibration methods: the absolute and the relative calibration
(Dinguirard and Slater, 1999). For absolute calibration, the
instrument response is compared with a known and consistent
radiation source; while the relative calibration consists of the
equalization of the output signal when the sensor is irradiated by a
uniform source of radiance. In this Doctoral Thesis, two sensors,
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a passive low-cost multispectral camera and an active terrestrial
laser scanner, have been successfully calibrated by the absolute
radiometric calibration method.

The radiometric calibration of the passive sensor was carried out
in a field campaign and through the vicarious radiance-based
method, on the other hand, the radiometric calibration of the
terrestrial laser scanner was performed in the laboratory under
temperature and humidity controlled conditions by applying the
vicarious reflectance-based method (Slater et al., 1987). In both
cases, the actual radiation (whether natural or artificial) was
compared with the captured by each sensor and the output digital
data with a final high level of agreement.

All systems are not necessarily linear by design. Some detectors
are inherently nonlinear. The analysis of the absolute calibration
results for both devices revealed intrinsic differences related with
their internal behaviour. The signal of the passive sensors follows
a linear function while the internal behaviour of the active sensors
follows a combination of exponential and/or logarithmic function
for different ranges. Active systems behaviour vary depending on
the manufacturer.

5.1.2. Radiometric calibration

Low-cost artificial surfaces have been tested and verified to be
used as calibration surfaces for the wvicarious radiometric
calibration.

It is possible to perform aerial remote sensing without the need of
correcting signal from atmospheric affectation by boarding
sensors on unmanned aerial systems at a moderate height (<100
m) or working at ground level.

The MULRACS software was developed in order to assist and
automate the radiometric calibration process of passive sensors
with the ability of avoiding the effects of outliers due to the
robust algorithms added.
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Significant improvements were achieved after calibrating remote sensors;
a 34% improvement of the Kappa coefficient was achieved in our
studies.

5.1.3. The Mini MCA-6 camera as a passive sensor

= The spectral configuration of the Mini MCA-6 multispectral
camera (530-801 nm) is ideal for conducting vegetation studies
(as it is shown in the results of the Chapter II); even so it would
be used with promising results in the fields of geology and
moisture detection by the hybridization of sensors.

* Some radiometric corrections had to be made to raw data prior to
the radiometric calibration process. Background error and
vignetting corrections were necessary since certain systematic
patterns were transmitted to the images, degrading the final
results.

* The Mini MCA-6 is capable to find spectral difference between
some sedimentary rocks but this land cover has heterogeneous
surfaces that propitiate difficulties associated with passive remote
sensing studies. Due to the ground-level acquisition, these
variations cause shadows in the surface and different reflection
patterns

5.1.4. Terrestrial laser scanners as active sensors

= Laser intensity is less influenced by changes in lighting
conditions than passive sensors so that through their use better
spectral results were obtained, even if the radiometric calibration
is not available.

» For the specific case of the FARO Focus 3D (905 nm) and the
Riegl LMS Z3901 (1550 nm) the moisture is well characterised
since this pathology has its characteristic spectral response in the
infrared range.
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Laser scanners give added value to the radiometric data. It
provides scale so it is possible to quantify pathologies detected by
its intensity data.

In spite of the black-box behaviour of TLS, it is possible to obtain
their radiometric calibration for reflectance values, since the light
source is controlled (active sensor).

5.1.5. Sensor fusion

A successful sensor hybridization of four different sensors, two
active (terrestrial laser scanners) and two passive (a multispectral
and a digital camera) has been achieved.

Through sensor fusion has been validated not only the ability to
automate the detection of moisture but also the precise
identification and quantification of the pathology on the surface
of different materials.

Data from the digital and multispectral cameras were conditioned
by both the registration of its bands and the influence of lighting
conditions.

5.2. Future works

After the development of this Doctoral Thesis several research lines and

implementations are open to improve, complement and optimize
multispectral studies with the fusion of active and passive remote

SeNnsors.

5.2.1. In general terms

It should not be forgotten that the surface of most of land covers
have a non Lambertian behaviour, contrary to the behaviour
assumption at first instance. By studying the anisotropic
behaviour of materials a better characterization of their
reflectance and thus, a more accurate spectral analysis of them

160



Chapter V. Conclusions and future works

would be possible. The reflectance of any surface depends on
both the orientation of the source of radiation and the viewpoint
of the data acquisition.

5.2.2. Radiometric calibration and the Mini MCA-6
camera as a passive sensor

It would be desirable to perform a radiometric calibration of the
sensor under laboratory controlled conditions with the purpose of
monitoring the possible changes that the calibration coefficients
may have with the use over the time.

5.2.3. Terrestrial laser scanners as active sensors

Broaden the range of possibilities offered by MULRACS
calibration software so that it enables not only the radiometric
calibration of passive sensors but also the calibration of active
sensors. Thus, it would contribute to automate the sensor
hybridization process and also to increase the use of this kind of
sensors to perform spectral analysis.

The incidence angle of a laser beam is an important factor that
affects the received intensity according to the Lambert’s Law.
While its effect has been minimised in the study cases performed
during the research work, it is proposed, whenever possible, to
estimate it and correct intensity data in to improve results of the
future spectral analysis.

5.2.4. Sensor fusion

The opportunity of using active terrestrial laser scanners working
on the visible range and passive remote sensors in the SWIR
range would complement these studies and more comprehensive
conclusions about the remote sensing operating principles and
spectral ranges would be drawn. Furthermore, the use of
hyperspectral sensors would open new challenges in this regard.

161



Multispectral imaging for the analysis of materials and pathologies in civil engineering,
constructions and natural spaces

The spatial resolution of multispectral images can be enhanced by
employing pan-sharpening. This technique is proposed to
optimise results from sensor fusion trying to combine the best
spatial and radiometric resolution offered by each of the sensors
used
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INDEXATION AND IMPACT FACTOR OF THE
JOURNALS

Paper | and 111:

- Vicarious radiometric calibration of a multispectral camera on
board an unmanned aerial system

- Multispectral radiometric analysis of facades to detect
pathologies from active and passive remote sensing

Journal: | Remote Sensing
Editorial | MDPI AG
ISSN: | 2072-4292
Impact factor (2014): | 3.180
Ranking: | 5/28
Quartile: | Q1
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ISI Web of Knowledge*™

Journal Citation Reports®

|'_E|_‘welc0ME| | > ..m| | :|1_1|E|§;'LIHNTD| 2014 JCR Science Edition

© Journal: Remote Sensing

5-Year
Impact| Impact| Immediacy |Citable| Cited Citing
Mark Journal Title ISSN Total Cites| Factor | Factor Index Items |Half-life |Half-life
m REMOTE SENS-BASEL 2072-4292 3061 3.180 | 3.257 0.505 572 2.5 7.9
Cited Journal [l  Citing Journal [Ilf Source Data Journal Self Cites

| cmeosouamacoaa | [ cmingiournacoata | [[jjg meacTFACTORTREND | | RELATED JOURNALS

Journal Information U rs

Full Journal Title:Remote Sensing
IS0 Abbrev. Title:Remote Sens.
JCR Abbrev. Title:REMOTE SENS-BASEL

Eigenfactor® Metrics
Figenfactor® Score

0.01044
ISSN:2072-4292 Article Influence®
Issues/Year:12 Score

Language:ENGLISH 0.772
Journal Country/Territory: SWITZERLAND
Publisher:MDPI AG
Publisher Address:POSTFACH, CH-4005 BASEL, SWITZERLAND

Subject Categories: REMOTE SENSING

[T view sournaL summagy ust | [ view catecory paa

Journal Rank in Categories:

Journal Impact Factor U rs

Cites in 2014 to items published in: 2013 =893  Number of items published in: 2013 =316

2012 =697 2012 =184
Sum: 1590 Sum: 500
Calculation:Cites to recent items 1590 =3.180
Number of recent items 500
5-Year Journal Impact Factor U .

Cites in {2014} to items published in: 2013 =893 Number of items published in: 2013 =316

2012 =697 2012 =184
2011 =513 2011 =137
2010 =428 2010 =141
2009 =241 2009 =73
Sum: 2772 Sum: 851

Calculation:Cites to recent items 2772 =3.257

Number of recent items 851
Journal Self Cites U .

The tables show the contribution of the journal's self cites to its impact factor. This information is also represented in
the cited journal graph.

Total Cites 3061 Self Cites 920 (30% of 3061)
Cites to Years Used in Self Cites to Years Used

Impact Factor Calculation 1590 in Impact Factor Calculation 528 (33% of 1590)
Impact Factor 3.180 Impact Factor without Self Cites|2.124
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Journal Citing Half-Life U
The citing half-life for the journal is the median age of the items the journal cited in the current 1CR year. Half of the
citations in the journal are to items published within the citing half-life.
Citing Half-Life: 7.9 years

Breakdown of the citations from the journal by the cumulative percent of 2014 cites to items published in the

following years:

Cited Year 2014|2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 |2004-all
# Cites from 2014 | 1047| 2371| 2435| 2217| 1993| 1865| 1804| 14066| 1350 1354 12068
Cumulative % 3.49| 11.40| 19.53| 26.92| 33.57| 39.79| 45.81| 50.70| 55.22| 59.74 100

Citing Half-Life Calculations:
The citing half-life calculation finds the number of publication years from the current JCR year that account for 50% of

citations in the journal. Read help for more information on the calculation.

rF s
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© Rank in Category: Remote Sensing

Journal Ranking U
For 2014, the journal Remote Sensing has an Impact Factor of 3.180.

This table shows the ranking of this journal in its subject categories based on Impact Factor.

Total Journals |Journal Rank| Quartile
in Category | in Category |in Category

REMOTE SENSING 28 5 Q1

Category Name

Category Box Plot U
For 2014, the journal Remote Sensing has an Impact Factor of 3.180.

This is a box plot of the subject category or categories to which the journal has been assigned. It provides
information about the distribution of journals based on Impact Factor values. It shows median, 25th and 75th
percentiles, and the extreme values of the distribution.
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Paper I1:

- Discrimination between sedimentary rocks from close-range
visible and very-near infrared images

Journal: | PLOS One
Editorial | Public Library of Science
ISSN: | 1932-6203
Impact factor (2014): | 3.234
Ranking: | 8/55
Quartile: | Q1
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ISI Web of Knowledge®™

Journal Citation Reports®

|'_E;‘WELCOME| ? “EU‘| | :ﬁE\EsTTURNTD| 2014 ICR Science Edition

T Journal: PLoS One

5-Year
Impact| Impact| Immediacy |Citable| Cited Citing
Mark Journal Title ISSN |Total Cites| Factor | Factor Index Items |Half-life Half-life
m PLOS ONE 1932-6203| 332716 | 3.234 | 3.702 0.489 30040 2.7 7.7
Cited Journal Il  Citing Journal Il Source Data Journal Self Cites

| cmepsournacoat | [ cming journatoata | [[Jjg IMPACT FACTORTREND | | RELATED JOURNALS

Journal Information U rs

Full Journal Title:PLoS Cne Eigenfactor® Metrics
IS0 Abbrev. Title:PLoS One Eigenfactor® Score
JCR Abbrev. Title:PLOS ONE 1.53341
ISSN:1932-6203 Article Influence®
Issues/Year:0 Score
Language:ENGLISH 1.200
Journal Country/Territory: UNITED STATES
Publisher: PUBLIC LIBRARY SCIENCE
Publisher Address: 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA
94111
Subject Categories: MULTIDISCIPLINARY SCIENCES
[T view ourniaL summagy usT | (¢4 view carecony pata_ |
Journal Rank in Categories:
Journal Impact Factor U -

Cites in 2014 to items published in: 2013 =82075  Number of items published in: 2013 =31498

2012 =95631 2012 =23447
Sum: 177706 Sum: 54945
Calculation:Cites to recent items 177706 =3.234
Number of recent items 54945
5-Year Journal Impact Factor U Lo

Cites in {2014} to items published in: 2013 =82075  Number of items published in: 2013 =31498

2012 =95631 2012 =23447
2011 =63047 2011 =13782
2010 =33288 2010 =56729
2009 =21581 2009 =4403
Sum: 295622 Sum: 79859
Calculation:Cites to recent items 295622 =3.702
Number of recent items 79859
Journal Self Cites U A

The tables show the contribution of the journal's self cites to its impact factor. This information is also represented in
the cited journal graph.

Total Cites 332716 Self Cites 35722 (10% of 332716)
Cites to Years Used in Self Cites to Years Used

Impact Factor Calculation 177708 in Impact Factor Calculation 19159 (10% of 177706)
Impact Factor 3.234 Impact Factor without Self Cites|2.886
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Journal Citing Half-Life U

rF s

The citing half-life for the journal is the median age of the items the journal cited in the current JCR year. Half of the
citations in the journal are to items published within the citing half-life.
Citing Half-Life: 7.7 years

Breakdown of the citations from the journal by the cumulative percent of 2014 cites to items published in the

following years:

Cited Year 2014 | 2013 2012 | 2011 2010 | 2009 | 2008 | 2007 | 2006 | 2005 |2004-all
# Cites from 2014 | 24009 | 102139| 122681 | 115560| 107925| 98919| 89936 81869| 74485| 68170 544713
Cumulative % 1.68 8.82 17.40| 25.47| 33.02| 39.94| 46.22| 51.95| 57.15| 61.92 100

Citing Half-Life Calculations:
The citing half-life calculation finds the number of publication years from the current JCR year that account for 50% of

citations in the journal. Read help for more information on the calculation.
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2 Rank in Category: PLoS One

Journal Ranking U
For 2014, the journal PLoS One has an Impact Factor of 3.234.

This table shows the ranking of this journal in its subject categories based on Impact Factor.

Total Journals |Journal Rank| Quartile
in Category | in Category |in Category

MULTIDISCIPLINARY SCIENCES 57 9 Q1

Category Name
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Category Box Plot U

For 2014, the journal PLoS One has an Impact Factor of 3.234.

This is a box plot of the subject category or categories to which the journal has been assigned. It provides
information about the distribution of journals based on Impact Factor values. It shows median, 25th and 75th
percentiles, and the extreme values of the distribution.
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Paper IV:

- Automatic mapping of moisture affectation in exposed concrete
structures by fusing different wavelength remote sensors

Journal: | Structural Control and Health Monitoring
Editorial | Wiley Online Library
ISSN: | 1545-2255
Impact factor (2014): | 2.133
Ranking: | 8/59 (constructions & building technology)
Quartile: | Q1
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ISI Web of Knowledge®™

Journal Citation Reports®

~ 5 RETURN TO
"_u_ WEI.COME| | 2 “EU‘| ‘ :ﬁusr | 2014 JCR Science Edition

© Journal: Structural Control & Health Monitoring

5-Year
Impact| Impact | Immediacy|Citable| Cited Citing
Mark Journal Title ISSN |Total Cites| Factor | Factor Index Items |Half-life|Half-life
m STRUCT CONTROL HLTH 1545-2255 1128 2.133 [ 2.309 0.369 84 4.8 8.9
Cited Journal [IIn  Citing Journal Il Source Data Joumnal Self Cites

| cmepsoumnacoara | | cming sournatpata | [[Jg IMPACT FACTORTREND | | RELATED JOURNALS

Journal Information U A

Full Journal Title: Structural Control & Health Monitoring
ISO Abbrev. Title: Struct. Control. Health Monit.
JCR Abbrev. Title: STRUCT CONTROL HLTH

Eigenfactor® Metrics
Eigenfactor® Score

0.00341
ISSN: 1545-2255 Article Influence®
Issues/Year: 12 Score

Language: ENGLISH 0.738
Journal Country/Territory: ENGLAND
Publisher: WILEY - BLACKWELL
Publisher Address: 111 RIVER ST, HOBOKEN 07030-5774, MJ,
Subject Categories: CONSTRUCTION & BUILDING TECHNOLOGY

[T\ view sournaL summagy usT | [ viEw cATEGORY DATA |

ENGINEERING, CIVIL

[T\ view sournaL summary st | (€84 view carecomy pata |

INSTRUMENTS & INSTRUMEMNTATION

[T\ view sournaL summary Lst | (€84 view carecomy pata |

Journal Rank in Categories:

Journal Impact Factor U s

Cites in 2014 to items published in: 2012 =185 Number of items published in: 2013 =86

2012 =120 2012 =57
Sum: 305 Sum: 143
Calculation:Cites to recent items 305 =2.133
Number of recent items 143
5-Year Journal Impact Factor U -

Cites in {2014} to items published in: 2013 =185 MNumber of items published in: 2013 =86

2012 =120 2012 =57
2011 =134 2011 =56
2010 =115 2010 =47
2009 =118 2009 =45
Sum: 672 Sum: 291
Calculation:Cites to recent items 672 =2.309
Number of recent items 291
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Journal Self Cites U -

The tables show the contribution of the journal's self cites to its impact factor. This information is also represented in
the cited journal graph.

Total Cites 1128 Self Cites 226 (20% of 1128)

Cites to Years Used in Self Cites to Years Used

Impact Factor Calculation 305 in Impact Factor Calculation 59 (19% of 305)

Impact Factor 2.133 Impact Factor without Self Cites|1.720
Journal Immediacy Index U L

Cites in 2014 to items published in 2014 =31

Number of items published in 2014 =84
Calculation:  Cites to current items 31 =0.369
Number of current items 84
Journal Cited Half-Life U £

The cited half-life for the journal is the median age of its items cited in the current JCR year. Half of the citations to
the journal are to items published within the cited half-life.
Cited Half-Life: 4.8 years

Breakdown of the citations to the journal by the cumulative percent of 2014 cites to items published in the following
years:

Cited Year 2014|2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 |2004-all
# Cites from 2014 31 185 120 134 115 118 109 118 111 46 41
Cumulative % 2.75| 19.15| 29.79| 41.67| 51.86| 62.32| 71.99| 82.45| 92.29| 96.37 100

Cited Half-Life Calculations:
The cited half-life calculation finds the number of publication years from the current JCR year that account for 50% of
citations received by the journal. Read help for more information on the calculation.
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T Rank in Category: Structural Control & Health Monitoring

Journal Ranking ¥

For 2014, the journal Structural Control & Health Monitoring has an Impact Factor of 2.133.

This table shows the ranking of this journal in its subject categories based on Impact Factor.

Teiterar (e TPtaI Journals J_ournal Rank . Quartile
in Category | in Category |in Category
CONSTRUCTION & BUILDING TECHNOLOGY 59 & Q1
ENGINEERING, CIVIL 125 19 Q1
INSTRUMENTS & INSTRUMENTATION 56 11 Q1

Category Box Plot U

For 2014, the journal Structural Control & Health Monitoring has an Impact Factor of 2.133.

This is a box plot of the subject category or categories to which the journal has been assigned. It provides
information about the distribution of journals based on Impact Factor values. It shows median, 25th and 75th

percentiles, and the extreme values of the distribution.
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Subject Category
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Book chapter:

- Multispectral imaging: fundamentals, principles and methods to
damage assessment in constructions

Disciplines PBK PCH CIT FNCS Al ED

Engineering 70 1057 1461 1.29 5.02 53%
Mathemathics 47 606 1424 1.25 570 25%
Computer Science 42 537 823 1.24 5.29 59%
Technology 42 681 599 0.87 4.83 74%
Applied Physics and Chemistry 21 324 886 1.74 5.32 71%
Earth & Enviromental Sciences 20 223 263 0.91 1.51 48%
Economics, Business & Management 18 299 93 0.48 0.62 63%
Medicine & Clinical Medicine 17 306 426 2.65 071 81%
Biological Sciences - Humans 16 212 376 1.83 1.84 72%
Chemistry 15 152 307 1.03 3.91 74%
Biological Sciences - Animals & Plants 14 212 251 0.79 1.92 82%
Molecular Biology and Biochemistry 13 206 180 0.83 2.80 86%
Physics & Astronomy 10 139 168 0.95 3.09 37%
Materials Science 9 88 214 1.82 2.13 48%

Political Science & International Relations 9 146 34 0.34 0.31 48%
Law, Criminology & Penology 8 116 47 0.87 0.65 40%

185






APPENDIX B

MULRACS SOFTWARE






Appendix B. MULRACS software

MULRACS SOFTWARE

MULRACS-Multispectral Radiometric Calibration Software

Type: Registration of intellectual property
Reference: SA-00/2015/4722
University: University of Salamanca

UNESCO codes:

2209.18 Photometry
2209.20 Radiometry
2209.90 Image Processing
3311.11 Optical Instruments

Abstract:

The Multispectral Radiometric Calibration Software “MULRACS”,
developed in Matlab, is a software built-up for the radiometric calibration
of passive sensors at close-range distances (unaffected by atmosphere
scattering and absorption of solar radiation). It is based on the vicarious
calibration process, specifically on the radiance-based method likely to
be applied for both mono-spectral and multispectral detectors. After the
calibration process, images with physical values (reflectance or radiance)
can be generated. These images have a high potential for studies about
natural resources, environment, precision agriculture, crop classification,
etc. very useful for both the International Scientific Community and final
users that perform analysis of spectral signatures and radiometric image
analysis.

Applications:

It is of great interest to companies working with spectral signatures and
radiometric image analysis either to make assessments, surveys,
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inspection of materials and studies of production of natural resources. It
is also of great interest to the scientific community to investigate the
potential of sensors that are normally used for other purposes in the field
of radiometry.

Authors:

- Susana Del Pozo Aguilera

- Monica Herrero Huerta

- David Hernandez Lopez

- Pablo Rodriguez Gonzélvez
- Diego Gonzalez Aguilera

Partial Features:

Any company or research group seeking the analysis of land covers and
materials by using remote sensors must calibrate the devices that will be
used for that purpose adopting a measurement and calibration protocol
that helps adequately control the inspection of such surfaces. The
MULRACS software is purpose-built to assist this process and help to
effectively manage and control the radiometric calibration of passive
devices.

MULRACS software allows performing a rigorous calibration of sensors
through the vicarious radiance-based calibration method. From multiple
artificial targets collected in several images, a least squares adjustment is
applied.

Radiance, = f(c0,,cl.,DL. )+ Aa. 4)

where c0; and c1;, offset and gain, are the calibration coefficients of the
device, DL; the digital levels of the control targets extracted from the
collection of images, and «; a correction coefficient, all of them per ith
bands/channels of the device.

Furthermore, a robust estimation was chosen instead of an ordinary least
squares method. In particular, the Danish Method is applied iteratively in
order to give a series of weights according to the residual value of each
previous iteration in order to dismiss outliers. The CD that accompanies

190



Appendix B. MULRACS software

the Thesis (at the back of the book) includes the digital version of the
Thesis along with an executable and the source code of MULRACS
software.

Inputs/requirements:

- Surface radiances measured by a spectroradiometer

- Artificial Lambertian targets as control surfaces

- Artificial or natural surfaces as check surfaces

- The quantum efficiency of the CCD/CMOS sensor and filters of
the device

- Collection of images and their main parameters (focal length,
ISO, exposure time and aperture)

Outputs:

- Radiometric calibration parameters per band/channel

- Solar irradiance

- Radiance images

- Reflectance images

- Statistical calibration results: graphics, information about the
bands/channels and regarding the control and check surfaces.

Figure App.B.1: A screenshot of the software interface showing the most
noteworthy final products.
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2005-2009 Technical Engineering in Public Works, University of
Salamanca, Spain

Work & Research Experience

2009-2016 TIDOP Research Group
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- Reverse Engineering
- Photogrammetry and Computer Vision

2014 Research Stay at TuDelft University of Technology, The
Netherlands (3 months)
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