
A NEW APPROACH FOR 3D MODELS TRANSMISSION

A. Guarnieri a, F. Pirotti a, M. Pontin a, A. Vettore a

a CIRGEO, Interdept. Research Center of
Cartography, Photogrammetry, Remote Sensing and GIS

 University of Padova, Agripolis
35020 Legnaro (PD) - Italy

e-mail: antonio.vettore@unipd.it ; cirgeo@unipd.it

KEYWORDS: 3D modeling, Internet, data compression, documentation, data retrievial, VR

ABSTRACT

The visualization and interactive navigation of 3D models, like virtual visits of museums, churches or even whole cities (cybercity
models), are gaining a more and more increasing use and importance with time. This has been accomplished in last years thank to the
augmented power of modern CPUs, graphic hardware devices and thank to a wider access to the web. Even in the survey field the
interest towards 3D models has grown, given the advantages offered by ground-based laser scanners in terms of survey time and the
pretty good quality of obtained 3D models. Indeed, several tests and applications have been performed so far all around world with
such instruments: 3D data have been collected from objects of different shape and size, ranging from cultural heritage to land
infrastructures, accuracy has been investigated and corresponding 3D models have been created using appropriated software. Beside
issues related to the accuracy and the quality of resulting models, another interesting topic should be considered: the remote use of
these 3D models, i. e. how they can be optimally transmitted over the web.
To this aim we have developed a VRML split-browser, i.e. a 3D model visualization shared system based on two different server–
side and client-side applications. The former executes the rendering of the scene and send it to the client, which is located on the
remote PC of the user. In turn, the client provides the user with a graphical interface to explore the 3D model interactively.
The system is based on image compression and projective transformations, which allow to share the 3D models over the web with
limited throughput to the client. In this paper, we will present the frame prediction algorithm, based on a space displacement of the
viewpoint and the way adopted to apply it in the remote visualization system.

1. INTRODUCTION

Over last times, the 3D modeling of real objects, of whatever
size and complexity, is gaining a more and more interest and
importance by the scientific community. For instance, the
availability of close-range and long-range ground-based laser
scanners, which are able to collect several thousands of
points in short time, have increased the interest towards 3D
models as a useful and alternative mean for analysis and
study in the field of medicine, industry, cultural heritage,
engineering, architecture, etc. Tests and applications have
been extensively performed all around the world in order to
assess the accuracy and the quality of those 3D models.
Beside such topics, another interesting issue should be
considered: the remote use of these 3D models, i. e. how
they can be optimally transmitted over the web.
To this aim we have developed a VRML split-browser, i.e. a
3D model visualization shared system based on two different
server–side and client-side applications. The main advantage
of proposed solution relies on the fact that the server sends to
the client a periodic image sequence, composed by a
reference image and a set of error images, instead of the
whole VRML model. Basically, the server executes the
rendering of the scene and sends it to the client, which is
located on the remote user’s PC. In turn, the client provides
the user with a graphical interface to explore the 3D model
interactively. Thus, using suited image compression techni-
ques and projective transformations, 3D models can be
shared over the web with limited throughput to the client.

Though the developed technique looks like the algorithms
implemented in the MPEG compression, in this case the key-
advantage relies on the a-priori knowledge of the image
transformation parameters, as they are determined directly by
the request of viewpoint change made by the user through the
client GUI.
In this paper, we will present the frame prediction algorithm,
based on a space displacement of the viewpoint and the way
adopted to apply it in the remote visualization system.
The paper is structured as follows. In the section 2 a short
overview of the VRML language is provided, highlighting
the disadvantages that show up when large 3D data sets are
employed. In section 3 we describe the framework of our
VRML split-browser, we developed in order to improve the
remote transmission of 3D data. Then, section 4 focuses on
the mathematics which the implemented frame compression
algrotihm is based on, while in section 5 the results of the
tests performed using simple geometric shapes are presented.
Finally, section 6 reports the conclusions.

2. THE VRML LANGUAGE

Technically speaking, VRML is neither virtual reality nor a
modeling language; at its core, VRML is simply a 3D
interchange format. It defines most of the commonly used
semantics found in today's 3D applications such as
hierarchical transformations, light sources, viewpoints,
geometry, animation, fog, material properties, and texture

mailto:antonio.vettore@unipd.it
mailto:cirgeo@unipd.it

mapping. One of the primary goals in designing VRML was
to ensure that it at least succeeded as an effective 3D file
interchange format. Moreover, VRML can be considered as a
3D analog to HTML. This means that VRML serves as a
simple, multiplatform language for publishing 3D Web
pages. This is motivated by the fact that some information is
best experienced three dimensionally, such as games,
engineering and scientific visualizations, educational
experiences, and architecture. Typically these types of
projects require intensive interaction, animation, and user
participation and exploration beyond what is capable with a
page-, text-, or image-based format (i.e., HTML). VRML
provides the technology that integrates three dimensions, two
dimensions, text, and multimedia into a coherent model.
When these media types are combined with scripting
languages and Internet capabilities, an entirely new genre of
interactive applications are possible.
In 1997 a community of programmers, engineers, graphers
founded the VAG (VRML Architecture Group) in order to
extend the capabilities of the previous VRML version (1.0),
which feautured several properties of the Inventor File
Format, a graphic standard developed by Silicon Graphics.
The overall goal for the new VRML vs. 2.0 was fairly
modest: to allow objects in the world to move and to allow
the user to interact with the objects in the world, allowing the
creation of more interesting user experiences than those
created with VRML 1.0. The vs. 2.0 featured following
properties:
1) Composability, it should be relatively easy to take files

created by various people or tools and compose them
together to create a new document. This is another
property that VRML shares with HTML: It is easy to cut
and paste text from several HTML documents using
either a generic text editor or a specialized editing tool,
just as it is easy to cut and paste objects between VRML
worlds.

2) Scalability, is a constraint on the VRML 2.0 design.
VRML is designed to scale in three ways. First, it
should be theoretically possible for a VRML browser to
handle a world distributed across the Internet that
contains millions or billions of objects. Second, VRML
should work well when used with both very powerful
and very inexpensive machines, allowing the VRML
browser to trade off image or simulation quality for
improved performance and to scale well with increased
hardware performance. And third, VRML worlds should
scale with network performance, from the 14.4K
modems that are common today to multigigabit
connections that might become common in the future.

3) Extensibility, the language should allow the developer to
add functionalities, like new geometric primitives, for
instance.

The VRML format allows, therefore, to create 3D
environments, ensuring basic properties like full web access
to the model and platform independence: only a suitable
viewer is needed, capable to interpret the VRML files.
Such interactive technology can be profitably employed in
different application fields, like for example the virtual visit
of a museum or even of a whole city (cybercity). E-
Commerce is another interesting topic: a consumer could
virtually explore, in all its parts, the 3D model of the object to
be purchased, before to move to the shop. More recently, the
availability of 3D models of cultural heritage elements and
land infrastructures (like buidlings, churches, bridges, road
assets, etc.) contributed to increase the use of VRML as a
mean to share such models through the web. However, the

interest of the scientific community (medicine, engineering,
architecture, etc) towards 3D models has revealed in the same
time some limits of the VRML as interchange file format
when large data sets, acquired typically by close-range or
long-range ground-based laser scanners, are used. Major
disadvantages are the following:
1) File size. It is not uncommon to manage VRML files of

hundreds of MBytes;
2) Input peripherals. Interactive user commands are

activated through mouse and/or keyboard, which often
are not the optimal peripherals to navigate in the 3D
environment;

3) Computing resources. A VRML viewer needs often
high computational performance in order to manage and
render a complex scene, composed by thousands of
points or triangles.

Obviously, a more profitable way to share complex and large
3D models requires the development of solutions aimed to
overcome above mentioned issues.

3. THE VRML SPLIT-BROWSER

Beside the VRML language, the structure of the
browser/viewer has to be considered, as well. Basically, it is
a software application which is able to display a 3D scene,
whose content is described in a VRML file. Moreover, a
specific GUI (Graphical User Interface) is provided to the
user along with a suited set of commands, allowing to
navigate the 3D environment. A VRML viewer works
according to a stratified structure, whose main components
can be summarized as follows (fig. 1):
1) Parser. It checks the grammatical and sintactical content

of the file. If any error is encountered, the file is
discarded;

2) World loader, which deals with the loading of all
elements, like textures, sounds and scripts, required to
display correctly the virtual world content;

3) World manager, whose task entails with the loading in
the system memory of the representation of the virtual
scene. Furthermore some basic components of the scene
have to be tracked, like object positions, position and
orientation of the eye-point, position and properties of
light sources, object materials and the viewing volume.
The world manager can be considered as the analog of
the graphical engine used for the 3D models processing;

4) World renderer, which works together with the world
manager to correctly display on the user’s monitor the
content of the VRML file. The renderer checks the scene
continuously, if any change is detected (displacement of
the user’s eye-point) the new image to be displayed is
computed as fast as possible. Of course this task
requires high computational effort from the user’s
hardware, which is not always the case.

Figure 1: Conceptual framework of a VRML viewer

In order to solve for the issues described in previous section,
a VRML split-browser has been developed. Its working is
based on a computer network model, where a central
processor (the server) provides different kind of services to a
number of hosts (clients). In practice, this kind of viewer is
obtained by application of a client-server model to a generic
VRML viewer. As shown in figure 2, the proposed model
clearly distinguishes between server-side and client-side
tasks. The server manages the whole virtual environment
computing new scene views, processing user’s commands
and executing scripts or animations. From the client-side, an
interactive GUI is provided to the user by which the virtual
views sent form the server are displayed. Moreover, the user
can interact with the server by means of a number of
navigation commands available on the client’s GUI. After an
initial setup phase, needed to negotiate the parameters of the
communication protocol (e.g. maximum throughput accepted
by the client), a bidirectional communication loop begins
between server and client. In practice, the user activates a
command in the client’s GUI, through mouse and/or
keyboard. Such command is transmitted to the server as
event, i.e. as a request of scene change. Then the server
intreprets the event and, if possible, sends back to the client
the new view, which will displayed on the user’s GUI. The
described loop is repeated according to the user interaction.

Figure2: server/client-based VRML viewer architecture

This client-server approach shows following advantages:
1) The amount of data sent to the client is greatly reduced

respect with the transmission of the whole 3D model in
VRML format. Indeed the server sends to the client an
image sequence only: adopting an image compression
technique, the throughput could be further reduced;

2) The client doesn’t need high computational capabilities,
as the world management step is fully performed on the
server;

3) Since server and client are independent each other, the
LOD (Level of Detail) of each scene can be interactively
changed by the client ;

4) The system features a certain degree of portability, as
the source codes can be modified accordingly to the

Operative System on which the server-side and the
client-side applications should run.

5) The copyright on the 3D model is keeped, as the user
will never receive on his PC the whole VRML model,
but only a set of images corresponding to the actual
scene displayed on the monitor screen;

6) The user’s GUI is managed by the client only,
independently from the server. In this way a higher
effectiveness of the whole system is ensured, since the
server-side of the viewer doesn’t need to dedicate
computing resources for the user’s GUI management.

In order to allow the client to navigate the 3D model as fluent
as possible, regardless the size and complexity of the model
and client’s computing capabilities, above mentioned features
of our proposed split-browser are still not sufficient. An
image compression technique has to be implemented to get
an optimized client/server communication protocol. To this
aim two different compression algorithms have been
investigated, the LZ77 and the JPEG, comparing the results
of their applications to our split-browser transmitting simple
geometric 3D shapes. However obtained results revealed a
limited compression capability (higher for the LZ77 respect
with the JPEG) for our goals. This can be explained
considering that those algorithms are “general purpose”: they
can be applied to whatever kind of file, regardless its content.
Therefore we developed an “ad hoc” compression technique
which would exploit the “knowledge” about the context
where it should be applied. The description of this technique
will be the topic of the following section.

4. THE FRAME COMPRESSION ALGORITHM

The alternative procedure we developed in order to further
reduce the throughput between server and client is based on
the application of projective transformations. The underlying
idea is that subsequent views, processed by the server and
displayed by the client to the user, are joined each other
through such kind of transformations. Since the knowledge
about the geometry of the virtual environment (e.g. eye-point
position, viewing direction, etc) is needed, projective
transformations don’t allow to preserve the same level of
flexibility and versatility as LZ77 and JPEG image
compression algorithms. Therefore our method can be
applied to specific cases only, where geometry related images
are handled. As shown in figure 3, the server/client
communi-cation procedure works as follows:

Server-side operations
1) Given the user input (scene change) at time n, the server

processes the request generating the corresponding new
view of the 3D model (view B).

2) As the geometrical parameters describing the 3D scene
at time n-1 and n are known, the server can determine
the projective transformation, mapping view A to view
B. Computed parameters are then sent to the client.

3) The view A, describing the 3D scene at time n-1, is
applied the previous computed projective transforma-
tion. Consequently, a predicted view is generated, which
should represent a good approximation ov view B. the
prediction is generated by transforming the reference
frame (view A) on the basis of the displacement of the
user point of view (known from the selected command
of the GUI) and the distance from the image pixel
projection plane (known from the content of the Z
buffer).

4) Then, a pixel by pixel difference between view B and
the predicted view is calculated by the server. A so
called error-image is obtained, which is compressed
with LZ77 algorithm and sent to the client.

Client-side operations
1) The client receives the projective transformation

parameters and the error-image, which is decompressed,
retrieving the original image.

2) The projective transformation is applied to the view A,
generating a so called predicted view.

3) Then, the error-image is added pixel by pixel to the
predicted view, in order to create the requested view B,
which is then displayed by the client in the user’s GUI.

Figure 3: The VRML Split-browser structure

The decription presented above shows that the computational
load on the client is greatly reduced, respect with the classical
approach (transmission of the whole VRML model). Indeed,
the client is required only to apply the projective
transformation to the current view and to decompress the
error-image as fast as possible. Nowadays, requested
computational capabilities to perform such tasks are
commonly available on most home desktop PCs.
In the following subsection, some mathematics will be
provided about the developed frame compression algorithm.

4.1 The projective transformation

A projective transformation can be considered as a subset of
the more general group of coordinate transformations, which
maps a given input 2D image point x = [x1, x2] into a new
image point y = [y1, y2]. Adopting a matrix notation, this
mapping fucntion can be defined as follows:

dt +
+

=
xc

bAxy (1)

where

Rdcccbb
aa
aa tt ∈==








= ;][;]; 2121

2221

1211 [b A

Typically, each projective transformation is associated a
matrix P∈ ℜ3x3, called projective matrix, allowing a more
compact notation for eq. (1):
















=
















=

dcc
baa
baa

dt
21

22221

11211

M

LLL

M

c

bA
P (2)

In the following, the procedure adopted to compute the
projective transformation parameters will be described using
a simple polygon as target object in the 3D space. This
assumption doesn’t limit the effectiveness of our procedure,
since it is well known that each 3D object can be described in
terms of a number of interconnected polygons (typically
triangles). Therefore, in principle, it would be sufficient to
apply the algorithm to each composing polygon.
According to figure 4, the aim of our procedure deals with
the computation of the position of point T2, by application of
a projective transformation to point T1 (identified by P3).

Figure 4: Geometric model for the projective transformation

If projective transformations P1 and P2, mapping T on T1 and
T2 respectively, are known, following relationship can be
established:

))(()(1,122 TPPTPT 2 inv== (3)

In practice, the projective transformation which maps the
view-plane α1 (part of polygon β displayed on the user’s GUI
at time n-1) on α2 (view of polygon β at time n) can be
defined in terms of a matrix product:

 P (4) 1
123
−⋅= PP

where Pi denotes the projective matrix associated to the i-th
projective transformation. As shown by eq (4), in order to
determine P3, we need to compute P1 and P2 before. To this
aim, we consider firstly the parametric equations of α and β
planes (see figure 5):

ct'AxdtAx +⋅=→+⋅=→ '"" βα (5)

where A, B∈ℜ3x2; c, d ∈ℜ3; t, t”∈ℜ2 and x’, x”∈ℜ3. Then
we add two constrains: a) vectors generating the planes are
orthogonal (eq. 6); b) vectors c and d, defining the distance

of α and β planes from the origin of the absolute reference
frame, are orthogonal to their corresponding planes (eq. 7).

IAABB tt == (6)

0AdBc tt == (7)

Figure 5: Geometric model (partial view)

Now let us suppose to know B and c (i.e. the β plane), the
position in the 3D space of the eye-point E, the user’s
viewing direction v, the unit vector up of the eye-point and
m, the distance from the eye-point to α plane. Given such
parameters, we can compute the α plane, i.e. parameters A
and d of eq. 5, according to the constraints reported in eq 6,7.
These constraints mean that the two vectors generating the α
plane should be orthonormal and coincident with the columns
of matrix A, and vector d is orthogonal to them. Assuming
the view-plane (α) is orthogonal to unit vector v, it can be
easily demonstrated that matrix A becomes

[]















==

z

y

x

z

y

x

dx
dx
dx

up
up
up

dxupA | (8)

where dx = up ∧ v. Similarly, vector d can be easily obtained
according to following relationship:

 d (9) vvE, ⋅−><=)(m

where the symbol <,> denotes the scalar product.
At this step we have all elements needed to determine the
projective transformation P, which maps a generic point x’ of
β plane on point x”, lying on the α plane. Let be s the bundle
of straight lines passing through the eye-point E,

RtRts ∈∈∀+=→ ,; 3kEks (10)

With some straightforward algebra, we get the equation of
the straight line of s, which passes through point x’:

 (11) ExkEkr −=+= '; witht

Thus, in order to compute the value t* assumed by parameter
t, when the straight line r intersects the α plane on point x”,
we consider following equality:

 dAxEk +==+ ""* tt (12)

After some substitutions and taking into account eq. 7, we get

)(

)(*
EdcdBt'd

Edd
ttt

t

−+
−

=t (13)

Using eq. 10 and 13, the following fundamental relationship
is obtained, which represents the projective transformation
we searched for:

qt'h

gtFt t +⋅
+⋅

=
'" (14)

Indeed, the 2D vector t’ contains the coordinates of a generic
point x’ in a β plane fixed reference frame, while the vector
t”, obtained from t’ by eq. 14 , contains the 2D coordinates of
point x” on a α plane fixed reference frame.

5. TEST AND RESULTS

In order to evaluate the performance of the compression
algorithm, a server/client data transmission with the
developed split-browser has been carried out. To this end we
employed simple geometric shapes (polygons) of different
colors, as shown in figure 6. Here view A represents the
scene observed by the user at time n-1, B is the exact view as
computed by the server, to be displayed at time n, according
to user input, while the predicted view is the one obtained by
application of the projective transformation to view A on the
client.

Figure 6: Views A (left) – Predicted views (middle)
 Views B (right)

Following criterions were defined to compare the results each
other:
1) Average bit/pixel number of compressed view B. This

parameter defines the number used on average to code
each pixel ov compressed view B. As we dealt with 24
bit RGB images, the resulting value should be lower
than 24 to pass the test.

2) Average bit/pixel number of compressed error-image. It
is similar to the previous parameter, but in this case the
threshold value for the pass/fail test should be lower
than the previous one.

3) Compression ratio. It defines the ratio between the size
(in bytes) of compressed view B and the sum of the size

of compressed error-image and the bytes needed to code
the projective transformation parameters.

Table 1: Results of the frame compression algorithm
Polygon Compr.sed

Error-image
(bytes)

Compr.sed
View B
(bytes)

Bit/
pixel
error

Bit/
pixel
view

B

Ratio

Green 625 780 0.07 0.08 1.25
Red 603 768 0.06 0.08 1.27

Yellow 586 753 0.058 0.079 1.28

It should be noted that the compression ratio is always greater
than 1, what confirms the effectiveness of implemented
compression procedure. Indeed, this means that sending to
the client both the compressed error-image and the
parameters of the projective transformation, generates a
throughput lower than the transmission of the compressed
view only. As shown in table 1, the gain is ranging between
25% and 28% in terms of bytes employed.

6. CONCLUSIONS

In this paper an innovative concept of VRML browser has
been proposed. It is aimed mainly to allow the display of
complex and large 3D models, as the ones obtained by
ground-based laser scanners, reducing the computational load
on the user-side. To this end, we developed a VRML split-
browser, which is conceptually based on a server/client
paradigm, but at the same time it keeps all the advantages of
the VRML interchange file format as suitable mean to share
3D objects along the web. The main idea on the ground of
developed architecture is the splitting of the tasks between
server and client. The former performs all the operations
requiring the most computational effort, reducing the
working load of the latter. This has been accomplished using
perspective transformations and image compression
algorithms, like LZ77. In our system the server sends to the
client only a set o parameters, defining the perspective
transformation between to 3D scenes, and a compressed
error-image, instead of the whole VRML 3D model. Then the
client uses such elements to reconstruct the view of the scene
according to the input command activated by the user on the
client’s GUI.
The proposed work is still in progress, as improvements can
be still applied, in order to further optimize the performance
of our split-browser. We are investigating the use of the
Bounding Box, view-images caching and the adoption of a
linear prediction scheme in the LZ77 algorithm. The former
would allow to compress only the portion of the whole 3D
model that is actually enclosed by the bounding box, saving
in this way the number of bytes used for the image coding.
The second solution deals with the creation of a memory
buffer on the client side, where all the views sent by the
srever are sequentially stored. In this way, if the eye-point
(user’s viewing direction) returns back on a previous visited
position, the client needs to restore the corresponding view
from the buffer: no data have to be sent from server to the
client. A further server/client throughput reduction could be
achieved by means of the linear prediction: the pixel color of
an image can be predicted on the baiss of the color of the
neighbours. Accordingly, the server would not compress the
original image but rather the so called residual-image, whose

pixels are obtained as difference of the color values of
adjacent pixels ont he source image.

ACKNOWLEDGEMENTS

This work was developed with the project “Application in the
survey, store and management of environmental and cultural
resources of GNSS/INS positioning and satellite, aerial,
terrestrial photographic and laser scanning data, transmitted
by DARC, GSM/GLOBAL STAR, INTERNET methods”,
partly financed by MURST (Italian Ministry of University
and Research) in 2002 as project of relevant National interest.
National coordinator: Giorgio Manzoni, head of the Research
unit Antonio Vettore.

REFERENCES

Carey R., Bell G, 1997. The Annotated VRML 97 Reference

Foley J., Dam A. V., Feiner S., Hughes J., 1996. Computer
Graphics: Principles and Practice. Addison-Wesley, 2nd
edition.

Gleicher M., Projective Registration with Difference
Decomposition. URL: http//www.cs.wisc.edu/Graphics/
Papers/Gleicher/California/track-Final.pdf

Hartley R., Zissermann A., 1999. Multiple View Geometry.
CVPR, June.

Mason W, 1997. Open-GL Programming Guide. Addison-
Wesley, 2nd edition.

Mian G.A., Rinaldo R., 2000. Elaborazione e Trasmissione
delle Immagini. Ed. Libreria Progetto, Padova.

Nelson M., 1992. The Data Compression Book. M&T Books.

Ziv J., Lempel A., 1977. A Universal Algorithm for
Sequential Data Compression. IEEE Transactions on
Information Theory, n. 23, pp. 337-343.

	ABSTRACT
	Client-side operations
	6. CONCLUSIONS

	ACKNOWLEDGEMENTS
	
	REFERENCES

