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ABSTRACT 
 
The visualization and interactive navigation of 3D models, like virtual visits of museums, churches or even whole cities (cybercity 
models), are gaining a more and more increasing use and importance with time. This has been accomplished in last years thank to the 
augmented power of modern CPUs, graphic hardware devices and thank to a wider access to the web. Even in the survey field the 
interest towards 3D models has grown, given the advantages offered by ground-based laser scanners in terms of survey time and the 
pretty good quality of obtained 3D models. Indeed, several tests and applications have been performed so far all around world with 
such instruments: 3D data have been collected from objects of different shape and size, ranging from cultural heritage to land 
infrastructures, accuracy has been investigated and corresponding 3D models have been created using appropriated software. Beside 
issues related to the accuracy and the quality of resulting models, another interesting topic should be considered: the remote use of  
these 3D models, i. e.  how they can be optimally transmitted over the web. 
To this aim we have developed a VRML split-browser, i.e. a 3D model visualization shared system based on two different server–
side and client-side applications. The former executes the rendering of the scene and send it to the client, which is located on the 
remote PC of the user. In turn, the client provides the user with a graphical interface to explore the 3D model interactively.  
The system is based on image compression  and projective transformations, which allow to share the 3D models over the web with 
limited throughput to the client. In this paper, we will present the frame prediction algorithm, based on a space displacement of the 
viewpoint and the way adopted to apply it in the remote visualization system. 
 
 
 
1. INTRODUCTION 
 
Over last times, the 3D modeling of real objects, of whatever 
size and complexity, is gaining a more and more interest and 
importance by the scientific community. For instance, the 
availability of close-range and long-range ground-based laser 
scanners, which are able to collect several thousands of 
points in short time, have increased the interest towards 3D 
models as a useful and alternative mean for analysis and 
study in the field of medicine, industry, cultural heritage, 
engineering, architecture, etc. Tests and applications have 
been extensively performed all around the world in order to 
assess the accuracy and the quality of those 3D models. 
Beside such topics, another interesting issue should be 
considered: the remote use of  these 3D models, i. e.  how 
they can be optimally transmitted over the web.  
To this aim we have developed a VRML split-browser, i.e. a 
3D model visualization shared system based on two different 
server–side and client-side applications. The main advantage 
of proposed solution relies on the fact that the server sends to 
the client a periodic image sequence, composed by a 
reference image and a set of error images, instead of the 
whole VRML model. Basically, the server executes the 
rendering of the scene and sends it to the client, which is 
located on the remote user’s PC. In turn, the client provides 
the user with a graphical interface to explore the 3D model 
interactively. Thus, using suited image compression techni-
ques and projective transformations, 3D models can be 
shared over the web with limited throughput to the client. 

Though the developed technique looks like the algorithms 
implemented in the MPEG compression, in this case the key-
advantage relies on the a-priori knowledge of the image 
transformation parameters, as they are determined directly by 
the request of viewpoint change made by the user through the 
client GUI.  
In this paper, we will present the frame prediction algorithm, 
based on a space displacement of the viewpoint and the way 
adopted to apply it in the remote visualization system. 
The paper is structured as follows. In the section 2 a short 
overview of the VRML language is provided, highlighting 
the disadvantages that show up when large 3D data sets are 
employed. In section 3 we describe the framework of our 
VRML split-browser, we developed in order to improve the 
remote transmission of 3D data. Then, section 4 focuses on 
the mathematics which the implemented frame compression 
algrotihm is based on, while in section 5 the results of the 
tests performed using simple geometric shapes are presented. 
Finally, section 6 reports the conclusions. 
 
 
2. THE VRML LANGUAGE 
 
Technically speaking, VRML is neither virtual reality nor a 
modeling language; at its core, VRML is simply a 3D 
interchange format. It defines most of the commonly used 
semantics found in today's 3D applications such as 
hierarchical transformations, light sources, viewpoints, 
geometry, animation, fog, material properties, and texture 
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mapping. One of the primary goals in designing VRML was 
to ensure that it at least succeeded as an effective 3D file 
interchange format. Moreover, VRML can be considered as a 
3D analog to HTML. This means that VRML serves as a 
simple, multiplatform language for publishing 3D Web 
pages. This is motivated by the fact that some information is 
best experienced three dimensionally, such as games, 
engineering and scientific visualizations, educational 
experiences, and architecture. Typically these types of 
projects require intensive interaction, animation, and user 
participation and exploration beyond what is capable with a 
page-, text-, or image-based format (i.e., HTML). VRML 
provides the technology that integrates three dimensions, two 
dimensions, text, and multimedia into a coherent model. 
When these media types are combined with scripting 
languages and Internet capabilities, an entirely new genre of 
interactive applications are possible.  
In 1997 a community of programmers, engineers, graphers 
founded the VAG (VRML Architecture Group) in order to 
extend the capabilities of the previous VRML version (1.0), 
which feautured several properties of the Inventor File 
Format, a graphic standard developed by Silicon Graphics. 
The overall goal for the new VRML vs. 2.0 was fairly 
modest: to allow objects in the world to move and to allow 
the user to interact with the objects in the world, allowing the 
creation of more interesting user experiences than those 
created with VRML 1.0. The vs. 2.0 featured following 
properties: 
1) Composability, it should be relatively easy to take files 

created by various people or tools and compose them 
together to create a new document. This is another 
property that VRML shares with HTML: It is easy to cut 
and paste text from several HTML documents using 
either a generic text editor or a specialized editing tool, 
just as it is easy to cut and paste objects between VRML 
worlds. 

2) Scalability, is a constraint on the VRML 2.0 design. 
VRML is designed to scale in three ways. First, it 
should be theoretically possible for a VRML browser to 
handle a world distributed across the Internet that 
contains millions or billions of objects. Second, VRML 
should work well when used with both very powerful 
and very inexpensive machines, allowing the VRML 
browser to trade off image or simulation quality for 
improved performance and to scale well with increased 
hardware performance. And third, VRML worlds should 
scale with network performance, from the 14.4K 
modems that are common today to multigigabit 
connections that might become common in the future.  

3) Extensibility, the language should allow the developer to 
add functionalities, like new geometric primitives, for 
instance. 

 
The VRML format allows, therefore, to create 3D 
environments, ensuring basic properties like full web access 
to the model and platform independence: only a suitable 
viewer is needed, capable to interpret the VRML files. 
Such interactive technology can be profitably employed in 
different application fields, like for example the virtual visit 
of a museum or even of a whole city (cybercity). E-
Commerce is another interesting topic: a consumer could 
virtually explore, in all its parts, the 3D model of the object to 
be purchased, before to move to the shop.  More recently, the 
availability of 3D models of cultural heritage elements and 
land infrastructures (like buidlings, churches, bridges, road 
assets, etc.) contributed to increase the use of VRML as a 
mean to share such models through the web. However, the 

interest of the scientific community (medicine, engineering, 
architecture, etc) towards 3D models has revealed in the same 
time some limits of the VRML as interchange file format 
when large data sets, acquired typically by close-range or 
long-range ground-based laser scanners, are used. Major 
disadvantages are the following: 
1) File size. It is not uncommon to manage VRML files of 

hundreds of MBytes; 
2) Input peripherals. Interactive user commands are 

activated through mouse and/or keyboard, which often 
are not the optimal peripherals to navigate in the 3D 
environment; 

3) Computing resources. A VRML viewer needs often 
high computational performance in order to manage and 
render a complex scene, composed by thousands of 
points or triangles.  

Obviously, a more profitable way to share complex and large 
3D models requires the development of solutions aimed to 
overcome above mentioned issues. 
  
 
3. THE VRML SPLIT-BROWSER 
 
Beside the VRML language, the structure of the 
browser/viewer has to be considered, as well. Basically, it is 
a software application which is able to display a 3D scene, 
whose content is described in a VRML file. Moreover, a 
specific GUI (Graphical User Interface) is provided to the 
user along with a suited set of commands, allowing to 
navigate the 3D environment. A VRML viewer works 
according to a stratified structure, whose main components 
can be summarized as follows (fig. 1): 
1) Parser. It checks the grammatical and sintactical content 

of the file. If any error is encountered, the file is 
discarded; 

2) World loader, which deals with the loading of all 
elements, like textures, sounds and scripts, required to 
display correctly the virtual world content; 

3) World manager, whose task entails with the loading in 
the system memory of the representation of the virtual 
scene. Furthermore some basic components of the scene 
have to be tracked, like object positions, position and 
orientation of the eye-point, position and properties of 
light sources, object materials and the viewing volume. 
The world manager can be considered as the analog of 
the graphical engine used for the 3D models processing; 

4) World renderer, which works together with the world 
manager to correctly display on the user’s monitor the 
content of the VRML file. The renderer checks the scene 
continuously, if any change is detected (displacement of 
the user’s eye-point) the new image to be displayed is 
computed as fast as possible. Of course this task 
requires high computational effort from the user’s 
hardware, which is not always the case. 

  
 

Figure 1: Conceptual framework of a VRML viewer 



In order to solve for the issues described in previous section, 
a VRML split-browser has been developed. Its working is 
based on a computer network model, where a central 
processor (the server) provides different kind of services to a 
number of hosts (clients). In practice, this kind of viewer is 
obtained by application of a client-server model to a generic 
VRML viewer. As shown in figure 2,  the proposed model 
clearly distinguishes between server-side and client-side 
tasks. The server manages the whole virtual environment 
computing new scene views, processing user’s commands 
and executing scripts or animations. From the client-side, an 
interactive GUI is provided to the user by which the virtual 
views sent form the server are displayed. Moreover, the user 
can interact with the server by means of a number of 
navigation commands available on the client’s GUI. After an 
initial setup phase, needed to negotiate the parameters of the 
communication protocol (e.g. maximum throughput accepted 
by the client), a bidirectional communication loop begins 
between server and client. In practice, the user activates a 
command in the client’s GUI, through mouse and/or 
keyboard. Such command is transmitted to the server as 
event, i.e. as a request of scene change. Then the server 
intreprets the event and, if possible, sends back to the client 
the new view, which will displayed on the user’s GUI. The 
described loop is repeated according to the user interaction. 
 

Figure2: server/client-based VRML viewer architecture 
 
 
This client-server approach shows following advantages: 
1) The amount of data sent to the client is greatly reduced 

respect with the transmission of the whole 3D model in 
VRML format. Indeed the server sends to the client an 
image sequence only: adopting an image compression 
technique, the throughput could be further reduced; 

2) The client doesn’t need high computational capabilities, 
as the world management step is fully performed on the 
server; 

3) Since server and client are independent each other, the 
LOD (Level of Detail) of each scene can be interactively 
changed by the client ; 

4) The system features a certain degree of portability, as 
the source codes can be modified accordingly to the 

Operative System on which the server-side and the 
client-side applications should run. 

5) The copyright on the 3D model is keeped, as the user 
will never receive on his PC the whole VRML model, 
but only a set of images corresponding to the actual 
scene displayed on the monitor screen; 

6) The user’s GUI is managed by the client only, 
independently from the server. In this way a higher 
effectiveness of the whole system is ensured, since the 
server-side of the viewer doesn’t need to dedicate 
computing resources for the user’s GUI management. 

 
In order to allow the client to navigate the 3D model as fluent 
as possible, regardless the size and complexity of the model 
and client’s computing capabilities, above mentioned features 
of our proposed split-browser are still not sufficient. An 
image compression technique has to be implemented to get 
an optimized client/server communication protocol. To this 
aim two different compression algorithms have been 
investigated, the LZ77 and the JPEG, comparing the results 
of their applications to our split-browser transmitting simple 
geometric 3D shapes. However obtained results revealed a 
limited compression capability (higher for the LZ77 respect 
with the JPEG) for our goals. This can be explained 
considering that those algorithms are “general purpose”: they 
can be applied to whatever kind of file, regardless its content. 
Therefore we developed an “ad hoc” compression technique 
which would exploit the “knowledge” about the context 
where it should be applied. The description of this technique 
will be the topic of the following section. 
 
 

4. THE FRAME COMPRESSION ALGORITHM 
 
The alternative procedure we developed in order to further 
reduce the throughput between server and client is based on 
the application of projective transformations. The underlying 
idea is that subsequent views, processed by the server and 
displayed by the client to the user, are joined each other 
through such kind of transformations. Since the knowledge 
about the geometry of the virtual environment (e.g. eye-point 
position, viewing direction, etc) is needed, projective 
transformations don’t allow to preserve the same level of 
flexibility and versatility as LZ77 and JPEG image 
compression algorithms. Therefore our method can be 
applied to specific cases only, where geometry related images 
are handled. As shown in figure 3, the server/client 
communi-cation procedure works as follows: 
 
Server-side operations 
1) Given the user input (scene change) at time n, the server 

processes the request generating the corresponding new 
view of the 3D model (view B). 

2) As the geometrical parameters describing the 3D scene 
at time n-1 and n are known, the server can determine 
the projective transformation, mapping view A to view 
B. Computed parameters are then sent to the client. 

3) The view A, describing the 3D scene at time n-1, is 
applied the previous computed projective transforma-
tion. Consequently, a predicted view is generated, which 
should represent a good approximation ov view B. the 
prediction is generated by transforming the reference 
frame (view A) on the basis of the displacement of the 
user point of view (known from the selected command 
of the GUI) and the distance from the image pixel 
projection plane (known from the content of the Z 
buffer). 



4) Then, a pixel by pixel difference between view B and 
the predicted view is calculated by the server. A so 
called error-image is obtained, which is compressed 
with LZ77 algorithm and sent to the client.  

 
Client-side operations 
1) The client receives the projective transformation 

parameters and the error-image, which is decompressed, 
retrieving the original image. 

2) The projective transformation is applied to the view A, 
generating a so called predicted view. 

3) Then, the error-image is added pixel by pixel to the 
predicted view, in order to create the requested view B, 
which is then displayed by the client in the user’s GUI. 

 

Figure 3: The VRML Split-browser structure 
 
 
The decription presented above shows that the computational 
load on the client is greatly reduced, respect with the classical 
approach (transmission of the whole VRML model). Indeed, 
the client is required only to apply the projective 
transformation to the current view and to decompress the 
error-image as fast as possible. Nowadays, requested 
computational capabilities to perform such tasks are 
commonly available on most home desktop PCs.  
In the following subsection, some mathematics will be 
provided about the developed frame compression algorithm. 
 
4.1 The projective transformation 

A projective transformation  can be considered as a subset of 
the more general group of coordinate transformations, which 
maps a given input 2D image point x = [x1, x2] into a new 
image point y = [y1, y2]. Adopting a matrix notation, this 
mapping fucntion can be defined as follows: 
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Typically, each projective transformation is associated a 
matrix P∈ ℜ3x3, called projective matrix, allowing a more 
compact notation for eq. (1): 
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In the following, the procedure adopted to compute the 
projective transformation parameters will be described using 
a simple polygon as target object in the 3D space. This  
assumption doesn’t limit the effectiveness of our procedure, 
since it is well known that each 3D object can be described in 
terms of a number of interconnected polygons (typically 
triangles). Therefore, in principle, it would be sufficient to 
apply the algorithm to each composing polygon.  
According to figure 4, the aim of our procedure deals with 
the computation of the position of point T2, by application of 
a projective transformation to point T1 (identified by P3). 
 

Figure 4: Geometric model for the projective transformation 
 
 
If projective transformations P1 and P2, mapping T on T1 and 
T2 respectively, are known, following relationship can be 
established: 
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In practice, the projective transformation which maps the 
view-plane α1 (part of polygon β displayed on the user’s GUI 
at time n-1) on α2 (view of polygon β at time n) can be 
defined in terms of a matrix product: 
 

      P    (4) 1
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where Pi denotes the projective matrix associated to the i-th 
projective transformation. As shown by eq (4), in order to 
determine P3, we need to compute P1 and P2 before. To this 
aim, we consider firstly the parametric equations of α and β 
planes (see figure 5): 
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where A, B∈ℜ3x2; c, d ∈ℜ3; t, t”∈ℜ2 and  x’, x”∈ℜ3. Then 
we add two constrains: a) vectors generating the planes are 
orthogonal (eq. 6); b) vectors c and d, defining the distance 



of α and β planes from the origin of the absolute reference 
frame, are orthogonal to their corresponding planes (eq. 7).  
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Figure 5: Geometric model (partial view) 
 
 
Now let us suppose to know B and c (i.e. the β plane), the 
position in the 3D space of the eye-point E, the user’s 
viewing direction v, the unit vector up of the eye-point and 
m, the distance from the eye-point to α plane. Given such 
parameters, we can compute the α plane, i.e. parameters A 
and d of eq. 5, according to the constraints reported in eq 6,7.  
These constraints mean that the two vectors generating the α 
plane should be orthonormal and coincident with the columns 
of matrix A, and vector d is orthogonal to them. Assuming 
the view-plane (α) is orthogonal to unit vector v, it can be 
easily demonstrated that matrix A becomes 
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where dx = up ∧ v. Similarly, vector d can be easily obtained 
according to following relationship: 
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where the symbol <,> denotes the scalar product. 
At this step we have all elements needed to determine the 
projective transformation P, which maps a generic point x’ of 
β plane on point x”, lying on the α plane. Let be s the bundle 
of straight lines passing through the eye-point E, 
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With some straightforward algebra, we get the equation of 
the straight line of s, which passes through point x’: 
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Thus, in order to compute the value t* assumed by parameter 
t,  when the straight line r intersects the α plane on point x”, 
we consider following equality: 
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After some substitutions and taking into account eq. 7, we get 
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Using eq. 10 and 13, the following fundamental relationship 
is obtained, which represents the projective transformation 
we searched for: 
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Indeed, the 2D vector t’ contains the coordinates of a generic 
point x’ in a β plane fixed reference frame, while the vector 
t”, obtained from t’ by eq. 14 , contains the 2D coordinates of 
point x” on a α plane fixed reference frame.  
 
 

5. TEST AND RESULTS 
 
In order to evaluate the performance of the compression 
algorithm, a server/client data transmission with the 
developed split-browser has been carried out. To this end we 
employed simple geometric shapes (polygons) of different 
colors, as shown in figure 6. Here view A represents the 
scene observed by the user at time n-1, B is the exact view as 
computed by the server, to be displayed at time n, according 
to user input, while the predicted view is the one obtained by 
application of the projective transformation to view A on the 
client.  
 

Figure 6: Views A (left) – Predicted views (middle) 
        Views B (right) 

 
 
Following criterions were defined to compare the results each 
other: 
1) Average bit/pixel number of compressed view B. This 

parameter defines the number used on average to code 
each pixel ov compressed view B. As we dealt with 24 
bit RGB images, the resulting value should be lower 
than 24 to pass the test. 

2) Average bit/pixel number of compressed error-image. It 
is similar to the previous parameter, but in this case the 
threshold value for the pass/fail test should be lower 
than the previous one. 

3) Compression ratio. It defines the ratio between the size 
(in bytes) of compressed view B and the sum of the size 



of compressed error-image and the bytes needed to code 
the projective transformation parameters. 

 
 

Table 1: Results of the frame compression algorithm 
Polygon Compr.sed 

Error-image 
(bytes) 

Compr.sed 
View B 
(bytes) 

Bit/ 
pixel 
error 

Bit/ 
pixel 
view 

B 

Ratio

Green 625 780 0.07 0.08 1.25 
Red 603 768 0.06 0.08 1.27 

Yellow 586 753 0.058 0.079 1.28 
 
 
It should be noted that the compression ratio is always greater 
than 1, what confirms the effectiveness of implemented 
compression procedure. Indeed, this means that sending to 
the client both the compressed error-image and the 
parameters of the projective transformation, generates a 
throughput lower than the transmission of the compressed 
view only. As shown in table 1, the gain is ranging between 
25% and 28% in terms of bytes employed. 
 
 

6. CONCLUSIONS 
 

In this paper an innovative concept of VRML browser has 
been proposed. It is aimed mainly to allow the display of 
complex and large 3D models, as the ones obtained by 
ground-based laser scanners, reducing the computational load 
on the user-side. To this end, we developed a VRML split-
browser, which is conceptually based on a server/client 
paradigm, but at the same time it keeps all the advantages of 
the VRML interchange file format as suitable mean to share 
3D objects along the web. The main idea on the ground of 
developed architecture is the splitting of the tasks between 
server and client. The former performs all the operations 
requiring the most computational effort, reducing the 
working load of the latter. This has been accomplished using 
perspective transformations and image compression 
algorithms, like LZ77. In our system the server sends to the 
client only a set o parameters, defining the perspective 
transformation between to 3D scenes, and a compressed 
error-image, instead of the whole VRML 3D model. Then the 
client uses such elements to reconstruct the view of the scene 
according to the input command activated by the user on the 
client’s GUI.  
The proposed work is still in progress, as improvements can 
be still applied, in order to further optimize the performance 
of our split-browser. We are investigating the use of the 
Bounding Box, view-images caching and the adoption of a 
linear prediction scheme in the LZ77 algorithm. The former 
would allow to compress only the portion of the whole 3D 
model that is actually enclosed by the bounding box, saving 
in this way the number of bytes used for the image coding. 
The second solution deals with the creation of a memory 
buffer on the client side, where all the views sent by the 
srever are sequentially stored. In this way, if the eye-point 
(user’s viewing direction) returns back on a previous visited 
position, the client needs to restore the corresponding view 
from the buffer: no data have to be sent from server to the 
client. A further server/client throughput reduction could be 
achieved by means of the linear prediction: the pixel color of 
an image can be predicted on the baiss of the color of the 
neighbours. Accordingly, the server would not compress the 
original image but rather the so called residual-image, whose 

pixels are obtained as difference of the color values of 
adjacent pixels ont he source image.  
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