
VOLUMETRIC RECONSTRUCTION OF CULTURAL HERITAGE ARTIFACTS

Y. Kuzu, O. Sinram

Photogrammetry and Cartography

Technical University of Berlin
Str. des 17 Juni 135, EB 9
D-10623 Berlin, Germany

{kuzu,sinram}@fpk.tu-berlin.de

Commission V, WG V/2

KEY WORDS: Calibration, Close-Range, Correlation, Cultural Heritage, Photo-realism, Reconstruction, Visualization, Volume

Model.

ABSTRACT:

In this paper we present a voxel-based object reconstruction technique to compute photo realistic volume models of cultural heritage
artifacts from multiple color images. We use a CCD camera to acquire images of historical artifacts from several viewpoints. After
calibrating the camera, the orientation parameters of the acquired images are calculated with a bundle block adjustment. Since it is
impossible to mark control points on historical artifacts, natural texture was used. Our algorithm begins with initializing a volume
that encloses the 3D artifact to be reconstructed. A first approximation of the model is acquired by shape from silhouette which gives
the objects visual hull. Unfortunately, this method does not recover concavities on the object. In order to refine the representation,
several tools will be described. An important factor is the visibility information of a voxel in a specific image. It can be either on the
backside of the object, or occluded by other voxels in between. We present a fast method to recover this information with a line
tracing algorithm. Furthermore, a quality measure of the visibility is introduced, by using the surface normal vector of a voxel in
combination with the viewing direction of the image. These tools will help to generate the upgraded model more accurately.

KURZFASSUNG:

In dieser Arbeit stellen wir eine Technik zur Voxel-basierten Objektrekonstruktion vor, um fotorealistische Volumenmodelle von
Objekten aus mehreren Farbbildern zu erstellen. Wir verwenden eine CCD-Kamera um von verschiedenen Standpunkten Bilder
dieser Objekte aufzunehmen. Nach der Kalibrierung der Kamera werden die Orientierungsparameter der Bilder mit einer
Bündelblockausgleichung berechnet. Da es nicht möglich ist, Passpunkte auf dem Objekt anzubringen, wird natürliche Textur
verwendet. Am Anfang unseres Algorithmus wird ein Volumen initialisiert, welches das dreidimensionale Artefakt vollständig
umschließt. Eine erste Näherung des Modells wird mittels „Shape from Silhouette“ berechnet, welches die umgebende Hülle bildet.
Leider kann diese Methode keine konkaven Regionen des Objektes erfassen. Verschiedene Methoden werden beschrieben, die diese
Näherung verfeinern. Ein wichtiger Faktor ist die Sichtbarkeit eines Voxels in einem bestimmten Bild. Ein Voxel kann sich auf der
Rückseite eines Objekts befinden, oder durch andere Voxel innerhalb der Sichtrichtung verdeckt sein. Wir stellen eine Methode vor,
die mittels eines Linienverfolgungs-Algorithmus sehr schnelle Information liefert. Darüber hinaus verwenden wir die
Oberflächennormale des Voxels als ein Qualitätsmerkmal für die Sichtbarkeit bezüglich der Blickrichtung eines bestimmten Bildes.
Diese Werkzeuge bilden die Grundlage, das Modell zu verfeinern.

1. INTRODUCTION

Reconstruction of the shape of 3D objects from a series of
images is a challenging problem both in the disciplines
photogrammetry and computer vision.
When generating 3D models with traditional CAD techniques,
the details of 3D objects should be entered manually using
graphical interfaces. Furthermore, with traditional CAD
techniques objects are modeled with polygon patches and
traditional material description which does not give high degree
of realism. Since it is a labor intensive and complex process, the
efforts concentrated in automatic modeling of 3D objects either
with active methods by scanning the objects or with passive
methods by using their images taken by a CCD camera. In this
paper, we describe an efficient image-based approach to
compute volume models of cultural heritage artifacts from their
color images which is a low cost therefore an attractive method.

Cultural heritage preservation is one of the application areas of
3D model reconstruction. A full three-dimensional
reconstruction serves as a permanent record of the heritage
artifacts in their original position. Such a reconstruction can be
used to detect the changes for conservation purposes. The
models may also serve as manufacturing blueprint for machine
production of replicas for exhibitions. If the object is an
historical device for example the visitors might like to see it in
action and perform their experiments. High precise
reconstruction of the artifacts or replica can be made accessible
to scholars and visitors.
Another application area is virtual museums where 3-D
reconstruction, modeling and visualization of cultural heritage
artifacts can be done volumetrically. A virtual museum is a
computer generated environment where the artifacts and
information resources of the museum can be viewed locally or
on the internet. The users can view these artifacts from different

angles and distances. Besides, these representations of historical
artifacts are enriched by online explanations, animations, music,
video and narrations. This allows virtual museum visitors use
this computer generated environment interactively for cultural
research or educational purposes. In virtual museums there
might be large numbers of dynamic virtual objects; therefore
virtual objects should be modeled effectively. In order to
increase realism of the virtual world, objects can be modeled
from their images.
In this paper we use voxel-based methods to recover the shape
of the cultural heritage artifacts. Voxel methods consume large
amounts of memory, for example 512³ bytes (128 mbytes) for a
medium size cube (512 units in each direction). Since there are
rapid advances in hardware however, this problem is becoming
less important and volumetric representations is becoming more
attractive.
The model of the 3D object can be easily acquired by shape
from silhouettes methods in which the shape of the objects is
recovered by intersecting the volumes. The intersection of
silhouette cones from multiple images gives a good estimation
of the true model. This approximate model is called the visual
hull (Laurentini, 1995), (Matusik et al, 2000). Shape from
silhouette methods is fast and robust; however the concavities
and the critical areas on an object cannot be recovered with this
method because the viewing region doesn’t completely
surround the object. The later work to recover the shape of the
objects from multiple images is concentrated on voxel coloring
algorithms (Seitz and Dyer, 1997), (Culbertson et al, 1999),
(Kuzu and Sinram, 2002). These algorithms use color
consistency to distinguish surface points from the other points
in the scene. They use the fact that surface points in a scene
project into consistent (similar) colors in the input images.
In this paper we describe several tools to refine the object’s
visual hull.
The organization of the chapters is as follows: In chapter 2 the
image acquisition setup is described. The image orientation
process is also explained. The reconstruction of the model using
shape from silhouette technique will be described in chapter 3,
where the refinement tools are introduced as well. Also there,
an effective method to recover visibility information will be
introduced. Furthermore, this information will be enhanced with
a quality measure, by using the surface normal vector of a voxel
in combination with the viewing direction of the image. In
chapter 4 the refinement algorithm is explained.

2. IMAGE ACQUISITION SETUP

The system requirements of our experiment is simple, we use a
CCD video-camera in order to acquire still images of the
artifacts. Moreover, we use a calibration object to compute the
interior orientation parameters of the camera. We place the
object in front of a blue background. Image segmentation is a
requirement to recover visual hull of the object. In order to
segment object pixels from background pixels we place the
object in front of a homogeneous blue background. We capture
multiple views of the object resulting in a circular camera setup.

2.1 Camera Calibration and Determination of Control
Points

Before acquiring the images, the camera should be calibrated.
In our experiment we use a standard CCD video camera with
auto focus. The focus of the camera can be fixed but we cannot
tell whether it is unchanged since the last use. Hence, we
calibrated the sensor using several images with a special

calibration object which provides a good coverage of the
objects having three perpendicular square planes and 25 control
points on each side.
In a second session, the object is placed inside the calibration
frame in order to define some natural control points accurately,
as shown in figure 1.
A bundle block adjustment including all the images delivered
not only the interior camera parameters, but also the coordinates
of new points on the vase, which will serve as control points in
the space carving processes.
During the subsequent image acquisitions, the focus remained
fixed.

Figure 1: Camera calibration and control point determination

2.2 Image Orientation

In order to model the objects accurately, the images should be
oriented. As mentioned above, we determined some natural
control points on the objects surface, since we should not put
markings on an historical artifact. They were defined in an
arbitrarily chosen coordinate system, since there is no need to
have the coordinates in a specific higher-level coordinate
system.
The images were adjusted in a bundle block adjustment process.
We used enough tie points in all images in the circular camera
setup to perform a bundle block adjustment, covering all
images. Figure 2 shows an OpenGL visualization of the
situation. We achieved very accurate results for the image
orientations, using the previously calibrated camera.

Figure 2: The virtual camera setup.

3. VOXEL-BASED ALGORITHMS

3.1 Shape from Silhouette

Shape from silhouette is a well-known approach for recovering
the shape of the objects from their contours. This approach is
popular in computer vision and in computer graphics due to its
fast computation and robustness.
As a precondition of volume intersection algorithms, the
contour of the real object must be extracted from input images.
In this experiment a monochromatic blue background was used

to distinguish the object from the environment. The pixels
position in the IHS-colorspace is examined in order to decide if
it represents background or object. Since the blue background is
sufficiently homogeneous, we can easily define a hue domain
which is considered background. We performed the image
segmentation using the academic software HsbVis (HSB-
Visualization) that allows interactive segmentation and color
channel splitting and merging on a graphical user interface.
Shape from silhouette algorithms start with an opaque volume
that encloses the entire scene. This volume is discretized into
voxels. If we know the calibration information and image
orientation data, we can construct a bounding pyramid for each
silhouette image. Each point in silhouette defines a line in
object space that intersects the object at some depth. The
combination of all these rays for all foreground silhouette
points defines a cone in which the objects should lie. In order to
compute the silhouette cone, we projected all voxels in the cube
into every image, if the image coordinate defines a background
pixel, the voxel is marked to be deleted (voting).
Shape from silhouette algorithms intersect all silhouette cones
from multiple images to achieve the estimate geometry of the
object that is called the visual hull. In Figure 3, for simplicity,
the volume constructed is shown in 2D with its input images in
1D. The black polygon shows the visual hull of the object.

Figure 3: Method of volume intersection.

Shape from silhouette method is a conservative method and it
does not carve away the voxels it should not. Thus, visual hull
contains the true shape. When the greater number of views is
used, this technique progressively refines the object model.
However, if only a few views are used the recovered shape can
be very coarse since it cannot detect the object concavities.
Therefore silhouette contours alone cannot recover the object
model geometry precisely and should be supported by another
technique to get into the critical, concave areas. See (Kuzu and
Rodehorst, 2000) or (Kuzu and Sinram, 2002) for more details.

3.2 Voxel Neighborhood

Before we introduce some tools regarding voxels, we want to
clarify the understanding of neighborhood in 3D. When we
investigate digital raster images, a pixel has neighbors of two
degrees: those connected by an edge and those connected only
by a node. They are also called 4- and 8-connected
neighborhoods.

Figure 4: A voxel and its neighbors

In the three dimensional case, a voxel has six neighbors
connected by a face, twelve connected by an edge and another
eight connected by a node, which results in a total of 26
neighbors. Following 2D images, we call them 6-, 18- and 26-
connected neighborhoods. Figure 4 illustrates the different
degrees of neighborhood.

3.3 Line Traversal

Line traversal becomes an important tool for various tasks. For
example projections of voxels to pixels and vice versa require a
line traversal. The basic challenge is to do an operation on each
voxel along a line, which is defined by a start- and endpoint.
The first task would be to define a sensible start- and endpoint.
The line itself is defined by the image projection center (X0, Y0,
Z0) and either a voxel (VX, VY, VZ) or a pixel (i, k, -c). Running
any kind of operator on a voxel only makes sense within the
defined voxel cube, since there is no information outside. Thus,
for the sake of performance, we have to define the line so that it
completely encloses the cube, but not much longer.
The simplest limitation might be to look for those two λ-values,
so that:
















+

















−
−
−

=















−

0

0

0

0

0
1

Z
Y
X

c
yy
xx

R
Z
Y
X

pixel

i

i

voxel

λ (1)

will completely enclose the voxel cube for every image point.
In order to do so, the eight corners of the cube have to be
processed for each image only once. Figure 5a illustrates this
method.

a)

b)

Figure 5: Geometric restriction of the line traversal.

A second approach might be to enclose the cube with a sphere
and calculate its two intersection points (if any) with the line of
sight. Here, the λ-factor is individual for each pixel, so that we
can expect a tremendous loss in performance, outweighing the
advantage that the line might be a better approximation. This
approach is shown in Figure 5b.
The second line tracing problem is the connectivity of the line.
In three dimensions we can either define 6-, 18-, or 24-
connected lines. In consequence more or fewer voxels will be
traversed.
Although the algorithm for the 18-connected line is easier to
implement, the 6-connected line includes some more voxels.

For instance, an 18-connected line could intersect an 18-
connected surface without detection. An algorithm for a 6-
connected line can be found in (Amanatides and Woo, 1987). A
comparison of the two line types is displayed in figure 6.

a)

b)

Figure 6: 6- and 18-connected 3D-lines.

The algorithm for the 18-connected line can be described by the
following pseudocode:

function linetracing (P0=start, P1=end)
{
 let dx = P1.x - P0.x
 let dy = P1.y – P0.y
 let dz = P1.z - P0.z

 let maxlen = MAX[ABS(dx), ABS(dy), ABS(dz)]

 let sx = dx / maxlen
 let sy = dy / maxlen
 let sz = dz / maxlen

 let P = P0

 for (0 … maxlen)
 {
 call operator with P

 P.x = P.x + sx
 P.y = P.y + sy
 P.z = P.z + sz
 }
}

3.4 Visibility Information

It is often crucial to find out which voxel is visible in which
image. From polygonal models we know that there are two
reasons why a point (or a face) is not visible from a certain
viewpoint. The first and easy case is when the point is lying on
that side which is facing away from the camera. It is only
necessary to calculate the triangles normal vector and check if it
is pointing towards the camera.
The other case is that a point is occluded by another object in
between. The major approach creates a depth buffer, which
stores the distances of the recently projected points. Any point
further away is just skipped, while the buffer is updated with
the nearest point at a time.
As voxel techniques are very different from polygonal models,
we cannot simply take over their algorithms. The depth buffer
is flexible enough to apply it here as well, but we will use the
line tracing to achieve better and faster results.
Now, when we want to learn about the visibility of a voxel in a
certain image, a line is defined with the voxel itself as start
point, and the image projection centre as end point. We will use
the line tracing algorithm to check each voxel along the line,
whether it is background (and therefore transparent) or object
voxel (opaque). As soon as an opaque voxel is encountered, the
initial voxel can be considered occluded. When the line exits
the defined voxel cube, it can be stopped, assuming that the

voxel is visible. Whether lying on the backside, or occluded by
another voxel, the algorithm will correctly tell if the voxel is
visible or not.
The basic idea is depicted in Figure 7.

hiddensurface

occluded

visible

Object

Figure 7: Recovering visibility information

In Figure 11 on the last page the differences of the projection
results are displayed, based upon the decision, which voxels are
excluded from consideration. It can also be seen, that an
indirect transformation (the image pixel looks up the
corresponding voxel) delivers by far the best result.

3.5 Surface Normal Vector

The surface normal vector can tell us in which direction a voxel
is facing. It is the normal vector of the tangential surface from
the voxel of interest. While in polygonal models it is very easy
to calculate the normal vector (it is simply the cross product of
two sides of a triangle) it becomes more sophisticated with
voxel models.
Our basic approach calculates a least-squares adjustment on a
specific subset of surface voxels for the plane equation:

 0=+⋅+⋅+⋅ dzcybxa (2)

Therefore we define a certain radius within which we take all
surface voxels (see figure 8) and write them into the matrix A,
with:
















=

MMM
222

111

zyx
zyx

A (3)

and the unknown vector:
















=
















=

z

y

x

n
n
n

c
b
a

X (4)

Since only the direction of the tangential surface is of interest,
not the translation offset d (see equation 3), the unknown vector
contains only the three elements a, b and c, which directly
correspond to the elements of the surface normal vector.

We now have to solve A⋅X=0, where we are not interested in
the most obvious case X=0. We will use the singular value
decomposition (SVD) to compute the best solution, with X≠0
(Hartley, Zisserman, 2000). The SVD will be used to split the
design matrix A into three new matrices U, D and VT, such that
A=U⋅D⋅VT, where U and V are orthogonal matrices and D is a
diagonal matrix with non-negative entries. From adequate
literature we can learn that the solution to an equation AX=0
corresponds to that column of the V matrix, which corresponds
to the smallest value in the D matrix.
The recently derived unknown vector X directly contains the
elements of the desired normal vector, so that X=n.

Figure 8: Surface normal vector from a 7³ section of a cube.

Figure 9: Surface normal vectors on a larger selection.

The surface normal vector gives information of the direction,
where a voxel is facing. So it can serve as a quality measure for
visibility. When we simply calculate the angle between the
surface normal and the ray of sight, it can tell us whether the
voxel is ‘looking in our direction’. Hence, if the angle is small,
it is facing the image, and if it exceeds 90° it can be considered
hidden.

4. REFINEMENT ALGORITHM

As stated above, the shape from silhouette does not always
recover the true surface of the object. Therefore, in those
regions with a false surface we need to refine the carving.
As a fact, only true surface points will be projected into
corresponding image points, assuming correctly oriented
images are provided.

Thus, if we project any surface voxel into two or more images,
which are most likely to have the best view of this voxel, they
should be considered similar with an appropriate similarity
operator. The best images can be chosen upon the visibility
information and the surface normal vector, described in the last
chapter.
Consequently, if the set of pixels or pixel regions respectively,
are proven to be different, we can assume that the
corresponding voxel is not part of the true surface.
However, if the voxel projects into homogeneous regions of the
image, the similarity operator will constantly return a high
similarity value. There is no way to tell the correct
correspondence here.
Consequently, we can classify each surface voxel into three
classes: surface voxel, non surface voxel, uncertain. Once a
voxel has been considered surface voxel it should remain fixed
and should not be evaluated again. Non surface voxels on the
other hand will be erased and the voxels underneath become
surface voxels and will be considered in another iteration.
We can make use of line tracing when we encounter a non-
surface voxel. We define a reference image, which will result in
a line from the images projection centre to the voxel. Now we
can trace this line, starting with the voxel, away from the image
into the object. For each voxel along this line, we calculate a
new similarity value for the updated image projections. Where
we find the maximum similarity exceeding a sensible threshold,
we can assume it as the true surface and classify the
encountered voxels accordingly.

5. SUMMARY

In this paper we presented several powerful tools which are
useful in voxel based reconstructions. An experimental image
acquisition setup was explained on which the introduced
algorithms were tested. The shape from silhouette method was
briefly explained since it was introduced in earlier works.
Upon this approximated reconstruction, the line traversal is
applied in many occasions such as visibility computation,
texture mapping, similarity calculation. As an extension to
visibility information, we introduced the surface normal vector
derived from a regional section of surface voxels. All these
methods are sensitive to the degree of neighborhood, which has
been introduced in detail.
We explained how the refinement algorithm makes use of these
tools in order to improve the initial approximate reconstruction.

REFERENCES

Amanatides, J., Woo A., 1987. A Fast Voxel Traversal
Algorithm for Ray Tracing. Proc. Eurographics '87, pp 1-10.

Culbertson, W. B. Malzbender, T. Slabaugh, G., 1999.
Generalized Voxel Coloring. Proc. of the Vision Algorithms,
Workshop of ICCV, pp. 67 – 74.

Hartley R., Zisserman A., 2000. Multiple View Geometry in
Computer Vision. Cambridge University Press.

Kutulakos, N. and Seitz, M., 1998. A Theory of Shape by Space
Carving. University of Rochester CS Technical Report 692.

Kuzu, Y. Rodehorst, V., 2001. Volumetric Modelling using
Shape from Silhouette. Fourth Turkish-German Joint Geodetic
Days., pp. 469-476.

Kuzu, Y. Sinram, O., 2002. Photorealistic Object
Reconstruction using Voxel Coloring and Adjusted Image
Orientations. ACSM/ASPRS Annual Conference, Washington
DC, Proceedings CD-ROM, Proceed\00437.pdf.

Laurentini, A., 1995. How far 3D Shapes Can Be Understood
from 2D Silhouettes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol.17, No.2.

Matusik, W. Buehler, C. Raskar, R. Gortler, S. J. and
McMillan, L., 2000. Image-Based Visual Hulls. SIGGRAPH
2000 , Computer Graphics Proceedings, Annual Conference
Series, pp. 369-374.

Seitz, M. Dyer, R., 1997. Photorealistic Scene Reconstruction
by Voxel Coloring. Proceeding of Computer Vision and Pattern
Recognition Conference, pp. 1067-1073.

a) Original photograph

b) Visualization of a 256² cube

c) Visualization of a 512³ cube

d) Lighting simulation based
upon surface normal vector

Figure 10: Visualization of a replica of a Greek vase, Geometrical Period 900-800 B.C.

a) Projection of all voxels into
an image

b) Projection of all surface
voxels into an image

c) Projection of only visible
voxels into an image.

d) Image generated by ray
tracing (image to voxel)

Figure 11: Comparison of different projection methods on the model of Nefertiti.

