
________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

REAL-TIME RENDERING IN A PC-CLUSTER ENVIRONMENT PROVIDED BY
OPENSG

A. Bueschenfeld

Fachhochschule Bielefeld, University of Applied Sciences - Faculty of Architecture and Civil Engineering, Artilleriestr. 9, D-32427
Minden - E-Mail: arne.bueschenfeld.de

KEY WORDS: 3D, Interactive, Real-time, Virtual Reality, Visualization

ABSTRACT

OpenSG is an open source scene graph system. It works under Linux, IRIX and Windows based computers. The OpenSG project was
initiated in 1999. The program is written in the compiler language C++ and undergoes ongoing development. OpenSG features real-
time rendering and supports multi-threading as well as clustering in a user friendly way. Furthermore the scene graph system offers a
base of operations for active and passive stereo-applications.
In addition to Open GL, which can merely use model data as vectors, a scene graph offers the possibility to save scene data
hierarchically in a tree structure which refers the dependency of the objects. In case of multiple occurrences of the same detail it only
needs to be modelled once as it can be transformed various times later in the displayed scene, e.g. a recurring window shape of a
building.
A further advantage offered by the scene graph solution is its ability to display objects very fast. This is achieved by calculating
exactly the section of the total scene, that is in the observer’s field of vision while those parts of the whole projection which are
hidden by obstructing objects are not rendered. For instance, the scene graph system does not render the back of a building as along
as the observer is looking at its front. An additional feature is the so called backface-culling, a procedure which excludes all those
parts of the scene that are not in the viewer’s angle of vision.
Moreover OpenSG enables the depiction of a rendered object according to the viewers distance in various levels of detail (LOD) in
order to reduce the rendering time.
All together SGS are able to visualize fairly large and complex amounts of data with an outstanding performance.
This contribution aims at demonstrating the realisation of OpenSG as presentation-environment for object visualisation using
multiprojection on a power wall. In this context a simple-scene-manager is implemented in OpenSG in order to set up the viewport
and to permit the user’s interaction with the scene. This is conducted with commonly used OpenGL capable graphic boards in a local
network setup.
This contribution focuses on applications in the field of architecture and preservation of historical buildings as demonstrated in the
following examples of a gothic facade and buildings of the classicism of the 19th century.

1. INTRODUCTION

This contribution tries to show the possibilities of visualizing
virtual models with clusters. For this purpose the API OpenSG
is presented, which allows to display real-time rendering
graphics on single or several screens by using clusters.
Moreover the chance to generate stereo-projections will be
discussed.
There will be an introduction into the basics of scenegraph-
applications. In addition to this, the paper tries to give an overall
view of OpenSG functions.

2. OPENSG

The idea of OpenSG is to create an open source real-time
rendering API which based on OpenGL works independently of
the system to guarantee the requirements of today’s VR-
systems. API is the abbreviation for Application Programming
Interface. The API provides routines, protocols and service
programs for software productions. The foundations of OpenSG
were built in 1999 by Fraunhofer-IGD in cooperation with SGI
and other international experts. Initiators were Dirk Reiners,
Allen Bierbaum und Kent Watsen. Declared goals that should
be realized by OpenSG as scenegraph-system were:
1) Portability between several operating systems
2) Multi-threading support
3) Support of multiple-graphics-pipes and Clusters
4) Expandable and self-reflective system (The skill to provide

information about itself – realized by Field Containers)
5) Flexibility

2.1 Features of OpenSG

OpenSG works on IRIX, Linux and Windows-based computers.
The Open-Source-code permits experienced users to generate
expansions and changes of the system. Furthermore OpenSG is
freeware. OpenSG works as scenegraph-system. It supports
multi-threading among other things as well as clustering and is
able to support active and passive stereo-applications. The
system is based on OpenGL-standard and uses for example
GLUT to manage windows and generate graphics. OpenSG is
capable to import different kinds of file-format, and provides
two output-formats to export created scenegraphs. The cluster-
feature of OpenSG allows to synchronize different computers
and to embed them into the same program-process. This
connection of computers is called a cluster. For example, the
cluster mode permits to display stereo-pictures fast or serves to
run a powerwall or to display a 3-dimensional projection inside
a CAVE.

2.2 The structure of OpenSG-systems

Based on one of the following three operating systems Linux,
IRIX or Windows, all OpenSG-systems are using the OpenGL-
graphic-library. The OpenGL-standard is system-independent
and was developed by SGI, which took also part in inventing
the OpenSG system. Based on OpenGL the Graphic Library
Utility Tool GLUT is also integrated and may be used in
OpenSG. GLUT is an OpenGL-wrapper and simplifies window-
management and basic OpenGL functions. The low-level
functions of OpenSG are constructed on these basic-classes. For
example the low-level functions include the system-

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

architecture, multithreading- and clustering- as well as
rendering-functions. Further more the state-handling is defined
here which enables the minimization of changes of the state of
the chip and to raise the system-performance. On top of the
low-level functions there are three high-level functions:
First, the large scene support, which enables the system to
present large and complex scenes at the best speed by avoiding
unnecessary rendering-processes (Keywords are for example
occlusion-culling, backface-culling and LOD).
Second, the high-level primitives which among other things
produce view-dependent Levels of Detail, NURBS and
morphing and the visualization of scientific data and allow
volumetric effects like clouds or fire in OpenSG scenes.
Third, the high-level shading, which aims at improving
rendering-qualities by taking advantage of modern hardware to
calculate light effects.

3. SCENEGRAPHS

3.1 The Scenegraph

The visualization of larger objects in pixel- or vector-data
causes a huge amount of data which only a few systems are able
to display fast and with good quality. According to this it is
necessary to implement static light sources during the creation
of the file, and that all data of the scene are static. Scenegraphs
facilitate to store data hierarchically. Information about
visualization of the surfaces or light effects, e.g. shadows, are
calculated in dependence of the users point of view. OpenSG
deals with this in real-time while displaying the scene.
Scenegraphs posses knowledge about the stored data, literally
they get knowledge about the whole scene they are about to
render. This makes it possible to safe calculating time and to
minimize state-changes: If 100 objects in green colour and 100
objects in red colour have to be drawn in a mixed order,
OpenSG is able to sort these objects depending on their colour.
For example the green objects will be drawn before the red
ones. This economises the time necessary for the state changes.
The advantages of displaying a graphic with scenegraphs are a
better performance and as well as a lower amount of data and
multiple possibilities of usage. Thus it is not necessary for
example to define a reoccurring geometrical shape more then
once as a Scenegraph is able to transform that shape several
times depending on its number of occurrence. The knowledge
about the interdependences between single objects enables the
scenegraph to realize which objects are in the field of view and
which are hidden by other objects or are out of range of the
shown display. The exclusive calculation of forms shown in the
display saves time and raises graphic-speed.

3.2 The tree-structure

In order to construct a tree nodes and cores are used. While
nodes represent the structure and the dependencies of the single
parts inside of the tree, so to speak the position inside it, the
cores define the content of the node, like geometrical forms or
surface information. The top of the tree is called root or some
times even world. This root node cannot be subordinated to any
other node. Higher nodes are called parents, subordinated nodes
are called children. The tree-structures are divided into single-
parent- and multi-parent-systems. Multi-parent-systems are able
to assign several parents to one node. The advantage of a multi-
parent-system is that nodes which contain a reoccurring
geometrical shape have to be defined only once. Then several
transformation nodes are assigned as children of the geometrical
node. Single-parent-systems like OpenSG are merely able to

provide one parent per node. However, it is possible to assign
any number of children whereby changes of the parent are
passed down to all their children and grandchildren and so on.
In this way physical dependencies can be simulated. If all nodes
in a tree have no more than two children this is called a binary-
tree.

3.3 Hidden Face Removal - Culling functions

One of the strong points of scengraph-systems is the ability to
cut out unnecessary rendering processes. For this reason there
have been invented several functions.
OpenSG uses backface-culling, to cut out the away turned sides
of objects from the observers view. These areas are not rendered
so that calculating-time is saved and the efficiency of
presentation is increased.
Besides to backface- there is also occlusion-culling. In this
procedure the scenegraph-system identifies interruptions in the
line of view between observer and displayed object. Is the
object fully or partly hidden from the viewer’s eye the
scenegraph system does not render the invisible parts.
Moreover, view frustum culling cuts out all objects or parts of
objects of the rendering-process that are not in the observer’s
field of view. The field of view is assumed as a frustum of
pyramid. This can affect significant savings of time, depending
of the size of the scene.
Small feature culling is used by some scenegraph APIs but is
not implemented in OpenSG. When SFC is provided, small
objects are not rendered if they do not exceed a defined size in
the displayed screen. Hence, very small objects that are not
noticed in the visualization are not calculated.
Similar to the small feature culling the classification into several
levels of details is used. A LOD, a Level of Detail, defines the
accuracy of the rendering of an object. In most cases the LODs
are defined in dependence on the distance between viewer and
the observed object. When the viewer gets close to the rendered
object a higher Level of Detail is activated, because the viewer
is able to recognize smaller details in the picture. When the
viewer steps away from an observed object the Level of Detail
is lowered. Accordingly, details which do not need to be
realized in the distance can be culled out. There has to be
provided a separate model for each shown LOD. Here the fact
that lower Level of Details contain a smaller amount of
rendering-objects leads to a significant reduction of calculating-
time. If the synchronization of the distance with the shown
detail is well chosen the observer will not realize the changes
between the particular LODs. Some scenegraph-systems use
morphing-methods to interpolate between different LODs.
Thus, they achieve smoother model changes which the observer
can hardly recognize.

Figure 1. Low Level of Detail

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

Figure 2. High Level of Detail

3.4 Field Container

One major feature that distinguishes OpenSG from other
scenegraph-systems is its usage of Field Containers. The Field
Container concept was invented by the need for assigning
objects of multi-threading applications exclusively to a single
user. This procedure prevents two calculating-processes to
alternate the same data-object at the same time which frequently
causes a system-crash. Almost every class in OpenSG, so are
nodes and cores, are produced out of Field Containers. Objects
produced with the assistance of Field Containers are accessed
by pointers with a “Ptr” suffix. For this reason nodes and cores
are accessed with pointers too. Field Containers are able to
provide information about themselves or, as the case may be,
the data stored inside of them, e.g. they are self-reflective. The
ability to reflect was one of the ambitions of OpenSG. Every
class which is produced by Field Containers is declared in the
following format:

Static::create

Static describes the kind of container, for example
transformation, geometry, node etc. Create is the command to
create the container. The command to create a node named
Rootnode is:

NodePtr Rootnode = Node::create();

The type of the pointer has to be conform to the type of the
created object. The creation of the pointer and the assignment to
the created node can be accomplished in two separate steps. In
this case both was condensed to one in order to shorten the
program-code. Field Container store data in single- and
multifields. For example, the children of a node are stored in a
multifield because it is possible to assign more than one child
per node. This field is called childrenfield. The parent of a node
is stored inside of a singlefield because there cannot be more
than one parent for each node. Similar to arrays in C++
Multifields have an index to be accessed too. These indexes are,
as common in C++, defined in brackets.

4. OPENSG- CLUSTERS

A computer cluster is a group of locally connected computers
that work together as one unit. OpenSG divides a computer-
cluster in one client and several servers. This contradicts the
common perception of a client-server-setup but is explained by
the OpenSG-philosophy that servers are serving the screen

while the client performs the task of being the interface between
cluster and user and providing the model-data. A cluster can be
used to operate a powerwall or to realize a CAVE or to generate
stereo-projections. Powerwalls are clusters of several screens
which are projected from behind like TFT-Displays or
backprojectionscreens, to build a large formatted imaging area.
OpenSG provides a fairly simple possibility to realize a
powerwall that is rectangularly formatted (a matrix-formed
arrangement of screens). A Cave Automatic Virtual
Environment (better known by the recursive acronym CAVE) is
an immersive virtual reality environment where projectors are
directed to four, five or six of the walls of a room-sized cube.
The name is also a reference to “The Simile of the Cave” in
Plato’s Republic where a philosopher contemplates perception,
reality and illusion. A lifelike visual display is created by
projectors positioned outside of the cube and controlled by
physical movements from a user inside the CAVE. The first
CAVE was developed in the Electronic Visualization Lab at
University of Illinois and was announced and demonstrated at
the 1992 SIGGRAPH. It has been used and developed in
cooperation with the NCSA, to conduct research in various
virtual reality and scientific visualization fields.

Figure 3. OpenSG-cluster contending one client and three

servers

In this kind of visualization-technique each server controls one
of the output devices e.g. a TFT-display. The client provides
model-data, handles the synchronization of calculating-
processes and allows user-navigation inside of the scene. Each
server renders only those parts of the whole scene which is
displayed in the servers field of view.
OpenSGs clustering-ability is very similar to the multi-
threading functions because clustering feeds the calculating
processes partially to several computers. For clusters the type of
computer does not matter. It is possible to build a multimedia-
cluster with common customary computers. Even operating
systems, CPUs and graphic cards do not have to be of the same
type. Nevertheless, a network connection between client and all
servers is recommended. Notionally it is possible to initialize
more than one server on one computer or even to start a client
and a server on the same computer. However, this is
contradicting to the cluster-philosophy which is to take
advantage of the performance of multiple computers in order to
reach the best possible result in calculating-power. To operate
with just one computer for server and client may be useful to
test a cluster-program.
This is the schemata of clusters consisting one client which is
controlling two servers that serve four projectors:

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

5. STEREO-APPLICATIONS WITH OPENSG

Stereo-applications with OpenSG need a cluster to serve at least
two projectors which are swapping two pictures on the same
screen. To achieve this both projectors have to be adjusted to
use exactly the same projection-screen. In this case Projector-
racks with adjustable mountings are the best choice. OpenSG
supports stereo-applications with polarised filters in an easy
way. The OpenSG tutorial contains one of these applications.
This is a passive stereo-technique that uses filters in front of the
beamer-lenses. The viewer wears filter-glasses and each glass
corresponds to one of the beamer-filters. In this way each eye
sees just the part that is projected by the corresponding beamer.
OpenSG supports StereoCameraDecorators. Using this
decorator it is possible to use just one camera position and
assign two different viewports to this camera. These viewports
form the two pictures necessary for stereo-viewing. Each
viewport represents the field of view of one eye. It’s necessary
to input the eye-separation of the viewer. The larger the eye
separation the better the stereo-effect is realized. Too large eye-
separations cause the impression of a strong cross-eye effect.
Besides the polarised filters there is the anaglyphic-illustration.
This technique applies to the following: The polarised filters are
replaced by red-green illustration of both pictures. The viewer
wears glasses of the same colour. This is a simple stereo-
technique that does not need clusters or projectors because both
pictures are displayed on the same screen. The superposition is
done by the computer.
The DAVE of the Universität Braunschweig uses OpenSG and
shutter-glasses to realize 3D-visualization. Shutter-technique is
an active stereo-method and recommends high programming
skills and large technical equipment. In this method glasses are
worn that are shutting both eyes alternating, so there’s just one
eye looking on the screen at the same time. The projection
changes in the same frequency as the shutter glasses so that
both eyes are looking on different pictures while the picture
remains the same for the single eye. This kind of 3D projection
delivers very realistic results. The grade of realism of the
visualization is referred to in “level of immersion”. Immersion
describes the effect which the viewer realizes when the
displayed scene gets more and more real. The more realistic the
displayed scene the higher is the level of immersion. To identify
the correct perspective onto the scene a sensor is placed at the
back of the head of the viewer that detects the position inside of
the CAVE and the perspective. A mouse like pointing device
serves as navigation interface which transmits position and
movement to a receiver. Like a mouse this 3D-navigator offers

several buttons to activate the movement of the avatar or the
rotation around several axes.

6. CONCLUSIONS

OpenSG provides much potential to visualize large scenes in
different ways. For architectural purposes this processes are
more and more wanted. The advantages of OpenSG are low
costs for soft- and hardware, an open system structure, and
miscellaneous functions. Prepared stereo-applications and high
performance are further benefits. Contra arguments are
incomplete and rather brief documentations. This complicates
the access to program own applications. Interested users should
work through the OpenSG-Tutorial written by Oliver Abert and
use the OpenSG-forum for further questions. Furthermore
programming-examples may at times provide help with
unanswered questions. Scenegraph-systems are state of the art
at moment and provide best results in this field. Therefore it is
very likely that scenegraphs gain more and more influence for
visualization-purposes. OpenSG supports trendsetting
techniques and is permanently updated. OpenSG is freeware
and provides a complete scenegraph-system with good
expansibility.

REFERENCES

OpenSG Homepage

http://www.opensg.org

Pomaska Günter Between photo-realism and non-photo realistic
rendering - modeling urban areas for real time VR International
Workshop on Vision Techniques applied to the Rehabilitation
of City Centres, Oktober 2004, Lisbon, Portugal

Pomaska, Günter Implementation of web 3D tools for creating
interactive walkthrough environments from building
documentations ISPRS WG V/4 and IC WG III International
Workshop on Vision Techniques for Digital Architectural and
Archaeological Archives 2003, Ancona, Italy

Büschenfeld, Arne

Installation einer OpenSG Entwicklungsumgebung und
Transformation eines komplexen Cad-Modells in eine
Scenegraph-Datenstruktur

Fachhochschule Bielefeld, 2005, Minden, Germany

