

22nd CIPA Symposium, October 11-15, 2009, Kyoto, Japan

A NEW METHOD OF STORAGE AND
VISUALIZATION FOR MASSIVE POINT CLOUD DATASET

Zhiqiang Du*, Qiaoxiong Li

State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, 129

Luo Yu Road, Wuhan, Hubei, 430072, P. R. China-
duzhiqiang@lmars.whu.edu.cn, liqiaoxiong1@163.com

KEY WORDS: Massive point cloud, Multi-band image, LOD, Visualization, GPU

ABSTRACT:
Three dimensional data captured by laser scanning is widely used in documentation and proves invaluable to cultural heritage. De-
tailed and high-precision scanning results in huge collections of scanned points and the size of data file of a single object of-
ten exceeds the available computer memory. It is difficult to render the massive point cloud data in real time on a commodity PC be-
cause the data amount is much larger than the main memory. In this paper, based on the characteristics of massive point cloud data, a
new method is presented to solve this problem. Firstly, this method uses multi-band images to store point cloud data and it can
automatically adjust the output size of the point cloud image according to the available computer memory. Simultaneously, multi-
dimensional information of point cloud dataset, including position, intensity and color, will be stored into bands of images separately.
Secondly, through multi-level image down-sampling, this method creates image pyramid for the point cloud data. This image pyra-
mid represents different levels of detail for the model. During the real-time visualization phase, it selects different LOD models to
render according to observation location. Thirdly, this method takes full advantage of the GPU's rendering ability. It binds all the
rendering data to the graphic memory, which greatly accelerates the rendering speed. This method has no restriction on the com-
puter's memory capacity to process and store massive point cloud data. It can quickly process point cloud dataset with huge size and
visualize the dataset with LOD models in real time.

* Corresponding author: Zhiqiang Du. (duzhiqiang@lmars.whu.edu.cn)

1. INTRODUCTION

Point cloud is 3dimentional positions, possibly associated with
additional information, such as colors and normal, and can be
considered a sampling of a continuous surface. This
representation is extremely simple and flexible. Moreover, it
offers the additional advantage of avoiding connectivity
information and topological consistency. The fast growing
popularity of laser scanners makes capturing of 3D information
simple, efficient and direct.

Detailed and high-precision scanning point cloud is widely used
in digital documentation and other areas. However, the number
of points in the generated point cloud is in the order of million
points. Some scanning even generates billions of points and the
resolution can be as high as 1/4 mm (Levoy, 2000).
Interactively displaying the scanned point cloud data is
necessary for management of the datasets.

Interactively displaying and visualizing large amounts of data
has been a challenge in computer graphics since its inception.
In many cases, the amount of data that a user wants to visualize
exceeds available processing power and memory capacity.
Digital computers have natural limits dictated by physics,
mathematics and cost considerations. Interactive performance,
which forces the computation of new frames at 10 Hz or faster,
exacerbates the problem (Kasik, 2008). To interactively view
the massive point cloud dataset, a powerful workstation is
needed. For commodity PC, the data amount may exceed the

available memory and it is impossible to load the point cloud
dataset into memory.

In this paper, we propose a new method to visualize massive
point cloud dataset directly on commodity PC. We store the
massive point cloud dataset in multi-band images and create
levels of detail (LOD) for the point cloud dataset. The atomic
nature of a point sample gives the representation a built-in LOD.
Building levels of detail for the point cloud dataset has two
main advantages (Luebke, 2002). First, for the massive point
cloud dataset, less detailed data can be loaded into memory and
visualized on commodity PC. Second, the massive point cloud
dataset is often too dense when viewed from a distance. In this
case, less detailed data make the rendering image suffer little
loss in detail and can be rendered faster. To visualize the
massive point cloud dataset, we propose to switch between the
different LOD models of the point cloud dataset.

Our contribution is finding a new method to store the massive
point cloud dataset. And based on this storage method, we
develop a visualization method that can view the massive point
cloud dataset on commodity PC.

The rest of the paper is organized as follows. In section 2, the
previous work is reviewed. In section 3, we describe the storage
process, and in section 4, the visualization phase is presented.
In section 5, an application is introduced, which includes the
storage and visualization phase, we can examine the efficiency
and effect of this method by the result. In section 6, we
conclude our work and present some future work.

2. REVIEWS

There has been quite a lot technique, including visibility
computation, simplification, levels-of-detail, and cache-
coherent data management, in the massive data visualization
area (Silva 2002). All of these techniques aim to reduce the data
amount required to render, and many integrate with the out-of-
core techniques. Out-of-core refers to algorithms which process
data that is too large to fit into a computer's main memory at
one time. Such algorithms must be optimized to efficiently
fetch and access data stored in slow bulk memory such as hard
drive or tape drives. Different realization strategies of out-of-
core technique include Divide-and-conquer, cache-efficient,
external memory and streaming processing (Cox, 2007;
Pajarola, 2005).

Researchers have studied the problem of rendering massive
dataset at interactive frame rates for many years. Researchers
(Correa, 2004) use octree to partition the whole dataset. During
preprocess, it use an out-of-core preprocessing algorithm to
build an on-disk hierarchical representation for the model. At
run time, it uses an out-of-core rendering approach that employs
multiple threads to overlap rendering, visibility computation,
and disk operations. This method provides accurate rendering
images but rely on complex realization.

However, these techniques mainly focus on triangle or polygon
models. The conceptually most significant difference between
points and triangles is that points--much as voxels or pixels--
carry all attributes needed for processing and rendering. There
is no distinction between vertex and fragment anymore. Using
points as rendering primitives is a topic of ongoing research.
However, almost all publications in this area deal with the
rendering of geometric surfaces, as can be seen in the other
articles of this CG&A issue. The aim of the point-based
rendering (Gross, 2007; Levoy, 2000) is to create smooth
surfaces without holes based on the point-based models. Our
interest is to render the scattered point cloud dataset directly.

Researchers (Hopf, 2004) propose to accelerate the
visualization of scattered point data by a hierarchical data
structure based on a principal component analysis (PCA)
clustering procedure. By traversing this structure for each frame
they can trade-off rendering speed vs. image quality, and lower
hierarchy levels can be used during interaction. This approach
uses complex data structure and need lots of preprocess
operations. To render the scattered point cloud data directly, we
need a simpler and faster approach.

3. STORAGE

3.1 Why Use Multi-band Image

Point cloud generated from laser scanning has multi-
dimensional information. Basically, it has three dimension
coordinates. Additionally, it may include light intensity , colour
and normal information. Some researchers (Gu, 2002) have
already proposed to use images to store geometry. The multi-
dimensional characteristic of the point cloud require a flexible
and extensible structure to store the data. And multi-band image
becomes our option for storing point cloud data. Multi-band
image is widely used in remote sensing to store the scanned
information. It can include as many bands as required. For point

cloud, it has two main advantages to store it in multi-band
image.

Firstly, the extensible bands can hold all the information the
point cloud dataset contains. Coordinates, light intensity, colour,
normal or other information, each band corresponds to one
dimension of the information. For a point cloud dataset that has
only x y z information, a three-band image is needed to store
the data, and for a point cloud dataset that has three-
dimensional coordinates and light intensity, a four-band image
can be used.

Secondly, storing the point cloud in images can introduce image
processing methods into point cloud processing. Image is a two-
dimensional vector, and pixel is its basic unit. By storing point
cloud in images, one scanned point can be considered as one
pixel in the image. Image processing is a mature field that has
been studied for many years and there are many existing
effective algorithms that can be applied on images. By
introducing the image processing methods into point cloud
processing area, point cloud processing problems can be solved
by image processing methods. As an example, in section 3.2,
we introduce how the levels of detail of the point cloud dataset
are generated by using image down-sampling method.

3.2 Storage Process

Original Point Cloud File

Map part of the file into memory

Store the sampled data

Parse the mapped file and store the
parsed data

Whole file mapped

M under memory limitation

Y

Visulization

Y

Store data in a multi-band image

Down-sampling

Multi-band image

Multi-band Image
pyramid

Set down-sampling levels

Calculate AABB

Calculate memory usage M

N

Release memory taken by point
cloud data

N

Whole file mapped

N

Y

Parse and Store

Build Image Pyramid

Figure 1. Storage procedure

This section describes the whole process of storing the point
cloud dataset in multi-band images and build image pyramid for
the all the images. The process is shown in Figure 1.

The aim of storage phase is to parse the original point cloud file
and store it in multi-band images. The original point cloud file
generated by laser scanning is often larger than the available
memory. For files that larger than the memory, it is impossible
to load the whole point cloud file into memory at one time. So
we use memory file mapping. Every time only part of the file is
mapped to memory. The next step after file mapping is to parse
the mapped part of the file and calculate the Axis-Aligned
Bounding Box (AABB) of the mapped point cloud data. Parsing
is the process of getting useful information from the original
point cloud file. For a point cloud file that has three-
dimensional coordinates and light intensity, according to the
requirement, parsing can only get the coordinates information
or the coordinates with the light intensity.

AABB is the calculated along with parsing the file. In the
visualization phase, AABB is demanded to set the initial
viewpoint. When the mapped part of the file is parsed, we have
to judge if the memory usage is under the memory limitation.
For the parsed data is stored in memory and with the process
going, the stored data can exceed the available memory. In case
of under limitation, the next part of the file can be mapped and
do the same parsing and calculation process. In the other case,
the stored data has to be written to a multi-band image. We
generate a multi-band image that has the same band count as the
information dimension of the stored point cloud data and write
each dimension into its correspondent band. The AABB
information has to be stored with the point cloud data. In our
experiment, we choose GeoTiff as the multi-band image.
GeoTiff is widely used and can meet our demand well. We
store the point cloud data in its bands and the AABB
information in its header.

Figure 2. Structure of the stored multi-band image

By building image pyramid for the image file, we create levels
of detail (LOD) for the point cloud dataset. Many down-
sampling methods can be applied in image processing,
including nearest neighbour method, average method, Gaussian
method etc. To keep the down-sampling result consistent with
the original data, we use the nearest neighbour method. Nearest
neighbour down-sampling is fast and simple, which just
chooses one pixel from part of the image, and the result is part
of the original data. From the point cloud view, down-sampling
chooses some points to represent the dataset, and decreases the

detail of the original data. To build image pyramid, we set some
down-sampling levels, and stored the sampled result in the
same file. In this way, each level of the image pyramid
corresponds to one level of detail of the point cloud dataset.
Figure 2 shows the structure of the multi-band images. Figure 3
shows the image that stores the point cloud data, different
colours indicate different point information in the point cloud
dataset.

The file mapping and storing is iterated until the whole original
point cloud file is processed. The result of the whole process is
one or more multi-band images with its image pyramid.

Figure 3. Image that store the point cloud data, viewed with

ENVI

The storage phase is direct and simple. Neither time-consuming
calculation nor complex structure is needed, all we have to do is
to retrieve information from the original point cloud file and
store it in multi-band images. By building image pyramid for
each image, we generate different LODs for the point cloud
dataset. After this phase, the original point cloud dataset is
divided and stored in some multi-band images, and the LODs
are generated and the bounding boxes are known, it is time to
view the point cloud dataset.

4. VISUALIZATION

Point is one of the basic primitive in computer graphic. For
point cloud, using point as basic rendering primitive, the
rendering process can be simple and fast. The graphic pipeline
only need to project the discrete point cloud set to the screen
and fill colour in the projected pixels. There is no connectivity
information in the point cloud dataset and discontinuous point
sampled surface is displayed.

Our visualization phase can be divided into two steps. In the
first step, we do all the initialization work, including calculating
the initial viewpoint and load the appropriate level of point
cloud data. In the second step, with the change of the viewpoint
location, it discards the previous data and load new level of the
point cloud data. Figure 4 shows the whole visualization phase.

4.1 Initialization Phase

To set the initial viewpoint, the AABB of the whole point cloud
dataset has to be calculated. Fortunately, we store AABB of the
point cloud data that the image contained in image header. We
only need to go through every image to get AABB information
contained in each image and calculate the total AABB.

Figure 4. Visualization procedure

With the total AABB of the point cloud dataset, we can decide
the viewpoint from where the whole space the point cloud
dataset covers can be viewed. After this, the appropriate level of
point cloud data is to be load to display. We have to set rules
for loading different levels of detail of the point cloud. Distance
is a simple but effective rule. Based on the distance between
viewpoint and the centre of the AABB, we can decide which
level of the data should be loaded. When the distance between
them is less than the threshold, more detailed data has to be
loaded and when the distance gets larger and greater than the
threshold, sparser point cloud data is to be loaded. From the
view of stored images, the loading process is to go through each
image and load the correspondent level of data from the image
pyramid.

To render the point cloud file fast and effectively, it is better to
put the rendering data on the GPU side. For in that case, GPU
has faster access to the data and it doesn’t need to transport the
data from memory to GPU side every frame. Modern graphic
card support this feature, the data stored in the GPU side is
called vertex buffer (Wright, 2007).

When the initialization phase finished, the appropriate level of
the point cloud data is loaded into the GPU side and we can see
the rendered image of the point cloud.

4.2 Dynamic Change Phase

The displaying level of detail of the point cloud dataset can be
changed when the viewpoint location changes. Because we
build for the original point cloud static and discrete LODs, in
case of the detail level change, old data is out-of-date and
should be discarded and new data has to be loaded.

According to the distance rule, when the viewpoint get closer to
the centre of the AABB, the more detailed point cloud data is
displayed, this process continues until the most detailed data

which means the original point cloud data is loaded and
displayed. And it loads the less detailed data when the
viewpoint get further from the centre of the AABB until the
sparsest point cloud data is loaded.

In our visualization, Culling is difficult given only the AABBs.
The AABB of Point cloud stored in each image can be the same,
for the point cloud in the original file is unordered. It has to
load all the same level of the point cloud data stored in every
multi-band image. From the view of stored images, the loading
process is to go through each image and load the correspondent
level of data from the image pyramid. Before loading the data
stored in image into memory, it has to judge if the available
memory is enough to hold the data in that image, for the point
cloud data can be very large and take up a lot of memory. In
case of exceeding the available memory, it has to give up
loading, otherwise, the point cloud data stored in that image is
loaded into memory and transport to the GPU side. When the
point cloud data amount exceeds the graphic card memory, it
will store the data sent to GPU on main memory, but it still
managed by GPU, the penalty is that the access time would
increase and rendering speed decreases.

The dynamic change phase switches the rendering data
according to the distance between viewpoint and the centre of
AABB. We can also consider it as switching between different
static LODs of the point cloud dataset.

5. EXPERIMENTS AND ANALYSIS

This process applied in project--Digital Mogao Caves. The
original point cloud file is 1.74G, which is stored in text format
and contains 47,756,566 points. The point cloud includes three-
dimensional coordinates and one-dimensional light intensity.
The processing has been evaluated on a PC running Windows
XP, with Intel Pentium D CPU, 1GB DDR memory, and a
NVDIA GeForce 7300 GT graphic card.

5.1 Storage

We make comparison by storing only three-dimensional
coordinates and all of the four dimension information. We set
the down-sampling levels to 1/4, 1/16, 1/96 and 1/196. The
result is shown in Table 1.

By storing the original text point cloud file into multi-band
images, the file amount reduced. The amount of the sampled
data is only about 1/3 of the original data and the data amount
can be predicted by the sampling parameter. All of the
processing finished in few minutes. I/O takes most of the
storage time, because there is no complex calculation in the
storage phase.

Stored information 3D coordinates 3D coordinates and
light intensity

Bands 3 4
Original data amount

(MB) 561 760

Sampled data
amount(MB) 194 240

Total data
amount(MB) 755 1000

Time(s) 211 337

Table 1. Storage result

5.2 Visualization

In the storage phase, we build four levels of detail for the
original dataset. In table 2, we compare the loading time and
rendering speed of different levels of detail. The rendering here
only use the coordinates information.

LOD LOD3 LOD2 LOD1 LOD0 original
Point
number 187,810 748,525 2,988,239 11,943,853 47,775,412

Loading
time
(ms)

129 439 1686 4496 30408

Fps (/s) 60 40 35 12 2

Table 2. Rendering comparison

From table 2, we can see that when display the sampled LOD
data, the rendering speed fulfils interactivity requirement. When
the original data is displayed, the rendering speed decreases to a
low degree. Because in our visualization phase, no additional
culling is performed, we have to send all the loaded point data
to the graphic pipeline. When the data amount increases, the
loading time increases but is still acceptable.

Figure 5 shows different visualization effects of the LOD
models. We move the viewpoint in the scene, and when the
viewpoint gets closer to the point cloud model, more detailed
data is displayed.

(a) LOD 3

(b) LOD 2

(c) LOD 1

(d) LOD0

(e) Original point

Figure 5. LOD views of the Point cloud data

Figure 6. LOD quality

The quality of our LOD models are shown in Figure 6, we fix
the viewpoint and load models of different levels, the LOD
models created by image down-sampling are quite good.

6. CONCLUSION AND FUTURE WORK

We have presented a simple and fast approach to store and
visualize the massive point cloud dataset. Despite it simplicity,
using multi-band images to store the point cloud dataset can be
a critical point for the future research, for this introduces the
image processing approaches into point cloud processing field.
For instance, we employ the image down-sampling method to
create LODs for the point cloud dataset. In our current approach,
the limitation is the LOD model quality can not be promised. In
the original point cloud dataset, the points are unstructured and
unordered. It is difficult to maintain the geometry characteristic
in the LOD model without any other processing. This is what
we seek to solve in the future work.

We render the scattered point cloud dataset directly. The current
major limitation is in rendering primitive amount and image
quality. Without culling, we have to load all the point cloud
data at the same detail level. For massive point cloud dataset
that is larger than the memory, we can only view its LOD
model. And the points on the back face can affect the image
quality. Evidently, points cannot occlude one another (unless
they accidentally fall along the same ray from the viewpoint),
and therefore no point is actually hidden. This affects the
rendering effect a lot. To solve the visibility problem of point
cloud (Katz, 2007) provides some clues.

References
Correa, T. W., 2004. New Techniques for Out-Of-Core
Visualization of Large Datasets. Princeton University, USA.

Cox, M., Ellsworth D., 1997. Application-controlled Demand
Paging for Out-of-core Visualization. In: Proceedings of the 8th
conference on Visualization '97, Phoenix, Arizona, United
States, pp. 235-244.

Gobbetti, E., Marton, F., 2004. Layered Point Clouds. In:
Eurographics Symposium on Point Based Graphics, pp. 113-
120.

Gross, M., Pfister, H., 2007. Point-Based Graphics. Morgan
Kaufmann publisher, pp. 1-8.

Gu, X., Gortler, J. S., Hoppe H., 2002. Geometry Images. ACM
Transactions on Graphics, 21(3), pp. 355-361.

Kasik, D., Stephens, A., 2008. Course Notes: Massive Model
Visualization Techniques. In: International Conference on
Computer Graphics and Interactive Techniques, pp. 1-20.

Katz, P., Tal, A., Basri, P., 2007. Direct Visibility of Point Sets.
International Conference on Computer Graphics and
Interactive Techniques, San Diego, California, pp. 24-35.

Levoy, M., Rusinkiewicz, S., Ginzton M., 2000. The Digital
Michelangelo Project: 3D Scanning of Large Statues. Computer
graphics and interactive technique, pp. 131-144.

Luebke, D., Watson, B., Cohen J., 2002. Level of Detail for 3D
Graphics. Elsevier Science Inc.

Pajarola, R., 2005. Stream-Processing Points. In: Visualization
2005, pp. 239-246.

Rusinkiewicz, S., Levoy M., 2000. QSplat: A Multiresolution
Point Rendering System for Large Meshes. In: International
Conference on Computer Graphics and Interactive Techniques,
pp. 343-352.

Silva, C. Chiang,Y., El-Sana, J., Lindstrom, P., 2002. Out-Of-
Core Algorithms for Scientific Visualization and Computer
Graphics. IEEE Visualization 2002. Boston, Massachussetts,
United States.

Wright, S. R., Lipchak, J. B., Haemel, N., 2007. OpenGL
SuperBible Fourth Edition. Addison, Wesley, pp. 421-455.

