
________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

A VOLUMETRIC APPROACH FOR 3D SURFACE RECONSTRUCTION

A. Guarnieri, A. Vettore, M. Pontin
CIRGEO– Interdept. Research Center of Geomatics, University of Padova, Italy - cirgeo@unipd.it

KEYWORDS: laser scanning, 3D modeling, surface reconstruction, octree, marching cubes

ABSTRACT

In the last years, measuring sensors like the TOF or optical-based terrestrial laser scanners have been more and more increasingly
used, given their capability to acquire the 3D geometry of the surveyed object. Applications for these systems span among different
fields, such as industry, medicine, land management, heritage and VR environments. Regardless long-range or close-range laser
scanner was employed, two follo wing steps need to be performed in order to reconstruct the object shape: range image registration
and integration. The former allow for “tailoring” together the acquired point clouds, representing a “view” of the object surface as
sampled by the laser sensor. Then, after all views have been aligned each other, a unique representation of the object surface is
generated through the integration of those 3D views. At this stage several factors prevent from building the descriptive surface by
simple connection of the range images: non-uniform density sampling, measuring and registration errors. To solve for such modeling
issues, a volumetric approach has been devised for the generation of a mesh, i.e to create a surface representation from range data
acquired by an optical triangulation laser scanner. The developed method is based on the “consensus surface” concept introduced by
Wheeler, Sato and Ikeuchi, by which some kind of errors of the range images can be better identified and corrected. Then it has been
refined by integration with the so-called “Marching cubes” algorithm, a well used surface generation procedure in the field of
Computer Graphics. Finally, the proposed method has been completed with the development of a tool for hole-filling , though its
application is limited to little holes with enough regular edges. Pros and cons along with the results of our meshing algorithm, applied
to a little statue, will be presented as well.

1. INTRODUCTION

Nowadays, terrestrial laser scanners are playing a more and
more growing role in the field of survey systems, given their
capability to acquire in relative short time the 3D geometry of a
real object. Applications for these measuring sensors span
among different fields, such as industry, medicine, land
management, heritage and VR environments. For example, in
reverse engineering and quality control 3D models are
employed to assess the matching of the product with the original
design, virtual museums are created and filled with 3D models,
whose real counterparts could be physically located even at far
distances each other. Parts of the human body, like teeth, feet or
the bust, are often surveyed by means of optical laser scanners
in order to get a detailed 3D model to support and optimize the
application of correcting devices. Lately, virtual environments
filled up with 3D representations of statues, bas-relieves and
archaeological findings constitute an interesting way for remote
users to get a closer interaction with Cultural Heritage objects
located all around the world.
Sensors suited for 3D data acquisition can be classified in two
main groups: contact and non-contact. The latter class,
composed by laser scanner devices, can be further subdivided
according the employed measuring principle and the operating
range: optical scanners, like triangulation or pattern-based, and
Time of Flight (TOF) sensors. Non-contact sensors allow for
object surveying without the need to get in touch with it, what it
is often the case when dealing with ancient and valuable
sculptures or fragile pieces.
After data acquisition, regardless the kind of laser sensor has
been used, two following steps need to be performed, in order to
reconstruct the object shape: range image registration and
integration. The former allow for “tailoring” together the
various point clouds, representing a “view” of the object surface
as sampled by the laser sensor. Then, after all views have been
aligned each other, a unique representation of the object surface
is generated through the integration of those views. At this stage
several factors prevent from building the descriptive surface by
simple connection of the range images: non-uniform density
sampling, measuring errors and registration errors. For instance,
during data acquisition, due to the shape complexity and sensing

device capabilities, some object portions are described with
more range images than other (though a little overlap between
view pairs is required for the registration stage). This leads to
different point density sampling along the whole object, that
should be taken into account by the meshing algorithm in order
to provide an optimized surface representation of the object.
Moreover, registration errors allow for residual distances
between overlapping regions, which have to be eliminated to
correctly model such parts of the object as a continuous surface.
In this work a volumetric approach has been devised for the
generation of a mesh, i.e. to create a surface representation from
range data acquired by an optical triangulation laser scanner.
Volumetric algorithms represent a relative new method to the
mesh generation problem and seem to be very promising tools
given their capability to solve for some issues affecting
“classical” methods, like the Delaunay Triangulation or Soucy
& Laurendeau approach [Soucy et al, 1996] or the “zippering”
procedure developed by Turk & Levoy, as well [Turk et al.,
1994].
The developed method is based on the “consensus surface”
concept introduced by Wheeler, Sato and Ikeuchi [Wheeler et
al., 1998], by which some kind of errors of the range images can
be better identified and corrected. Then it has been refined by
integration with the so-called “Marching cubes” algorithm, a
well used surface generation procedure in the field of Computer
Graphics [Cline et al., 1987]. Finally, the proposed method has
been completed with the development of a tool for hole-filling ,
though its application is limited to little holes with enough
regular edges. Pros and cons along with the results of our
meshing algorithm, applied to a little statue, will be presented as
well.

2. THE CONSENSUS SURFACE ALGORITHM

Let’s suppose that m range views (Mk , k=1,2,…,m) have been
acquired by an optical laser scanner (range camera) in order to
build a 3D model of the surveyed object. Such range views
cover the whole object’s surface and present enough overlap
each other in order to be successfully aligned so that a unique
point cloud out of the whole measured volume can be obtained.

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

Assuming that the set of acquired m point clouds have been
already aligned and triangulated, the next step to be addressed
in the 3D modeling pipeline is the view integration, i.e. the
building of an object’s surface description (mesh) starting from
the set of registered range views. Regardless the nature of the
adopted method, a meshing algorithm should provide following
basic features: flexibility, noise robustness and data averaging.
The former requirement means that the algorithm should be able
to work with any kind of input data, regardless their geometric
configuration. Measured data are always affected by different
forms of noise, in this case a meshing algorithm is required to
detect and discard too noisy data, which likely don’t belong to
the actual object’s surface. Then, the algorithm should exploit
the data redundancy provided by the overlap between range
view pairs, by performing a sort of measurements averaging in
order to reduce the noise effect due to the unavoidable
acquisition and registration error.
Taking many triangulated surfaces in 3D space and converting
them to a triangle patch surface model is however a difficult
task. The problem is that it is difficult to determine how to
connect triangles from different surfaces without knowing the
surface beforehand. Not only the determination of
connectedness becomes more difficult, but the algorithm must
also consider how to eliminate the noise and small alignment
errors from the resulting model.
However, it seems that this issue can be solved for by resorting
to volumetric methods, which make the surface-merging
problem more tractable, as demonstrated by several researchers.

2.1 The Volumetric modeling

In the field of surface generation methods, occupancy grids are
the earliest form of volumetric representation. An occupancy
grid is formed by discretizing a volume into many voxels and
noting which voxels intersect the object. The result is usually a
coarse model that appears to be created by sticking a set of
cubes together to form the object shape. Of course, using small
enough cubes, the shape will look fine, but this becomes a
problem since the amount of memory required will be O(n3

)
where the volume is discretized into n slices along each
dimension. Fortunately, an algorithm developed for graphics
modeling applications has made volumetric modeling a bit more
useful by virtually eliminating the blocky nature of occupancy
grids. This algorithm is called the marching-cubes algorithm
[Cline et al., 1987]. The representation is slightly more
complicated than the occupancy grid representation. Instead of
storing a binary value in each voxel to indicate if the cube is
empty or filled, the marching-cubes algorithm requires the data
in the volume grid to be samples of an implicit surface. In each
voxel, the value D(x) of the signed distance from the center
point of the voxel, x, to the closest point on the object’s surface
is stored. The sign indicates whether the point is outside, f(x) >
0, or inside, D(x) < 0, the object’s surface, while D(x) = 0
indicates that x lies on the surface of the object. The marching-
cubes algorithm constructs a surface mesh by “marching”
around the cubes while following the zero crossings of the
implicit surface D(x) = 0. The signed distance allows the
marching-cubes algorithm to interpolate the location of the
surface with higher accuracy than the resolution of the volume
grid. Figure 1 shows an example of the interpolation.

2.2 Building the Consensus surface

Given a number of triangle sets (surface meshes) which are
aligned wit h respect to the desired coordinate system, the
problem now is taking such triangulated surfaces and converting
them to a triangle patch surface model. This task is made

difficult by the fact that many surfaces are available, and some
elements of those surfaces do not belong to the object of interest
but rather are artifacts of the image acquisition process or
background surfaces.

Figure 1: Example of zero-crossing interpolation from the grid
sampling of an implicit surface.

The method applied in this work to solve for the range view
integration resorts to the consensus-surface algorithm,
developed by M. D. Wheeler, which is based on the
computation of the signed distance function f(x) for arbitrary
points x from given N triangulated surface patches of various
views of the object surface. In this section the main features of
this algorithm are discussed, however more details can be found
in [Wheeler, 1996] and [Wheeler et al., 1998]. As described
above, the positive value of D(x) indicates the point x is outside
the object surface, a negative value indicates that x is inside,
and a value of zero indicates that x lies on the surface of the
object. Therefore, once distance values D(x) have been assigned
to each voxel, the surface representation can be extracted
computing the isosurface implicitly defined by D(x)=0 with the
marching-cubes method. The computation of D(x) can be
subdivided into two following steps:
1. Compute the magnitude: compute the distance |D(x)| to the

nearest object surface from x.
2. Compute the sign: determine whether the point is inside or

outside of the object
However, this simple approach cannot be successfully applied
to real data given the unavoidable presence of noise and
extraneous data. For example, it is not uncommon to see
triangles sticking out of a surface or other triangles that do not
belong to the object. This can occur due to sensor noise,
quantization, specularities and other possibly systematic
problems of range imaging. Generally, three main kind of errors
affect the quality of the resulting 3D model, as shown in figure
2: sampling, measuring and alignment error.

(a) (b) (c)

Figure 2: Example of data error due to sampling (a); sensor

measurement (b); alignment (c).

During data acquisition the object is surveyed from different
point of views in order to capture its whole shape. Moreover,
corresponding range images should present a certain level of
overlap for the point cloud alignment to be successfully. Despite
overlap means that the same portion of an object’s surface is
surveyed at least twice, it is unlikely that the measuring sensor
will capture exactly the same points as in the previous adjacent

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

scan. Correspondingly, two triangles of two different meshes
representing the same surface wont be never coincident. A
further error source is introduced by the laser sensor itself:
range measurements can be modeled as gaussian distributions
along the thre sensor axes (X, Y, Z). The higher error variance
will be along the depth (usually the Z component), being this
one the weakest measuring direction of an optical laser scanner.
Finally, the registration step contributes with a residual
alignment error which tends to grow with the number of range
views to be pairwise registered. This issues make it very easy to
infer the incorrect distance and more critically the incorrect
sign, which will result in very undesirable artifacts in the final
surface. For example, figure 3 shows how a single noisy bump
from one view can result in a bump on the final model.
Moreover, a badly oriented triangle can create an implicit
distance with the incorrect sign. This results in a hole rising out
of the surface.

Figure 3: Example of the effect on the final model of a noisy

bump in the range data

As proposed by Wheeler, the solution to these problems is to
estimate the surface locally by averaging the observations of the
same surface. The trick is to specify a method for identifying
and collecting all observations of the same surface.
Nearby observations are compared using their location and
surface normal. If the location and normal are within a
predefined error tolerance (determined empirically), they can be
considered as observations of the same surface. Given a point
on one of the observed triangle surfaces, other nearby
observations from other views, which are potentially
observations of the same surface, can be searched for in the 3D
space. This task can be accomplished efficiently using k-d trees
[Friedman et al., 1977] which is a structure for storing data of
arbitrary dimensions for optimal nearest neighbors search. If an
insufficient number of observations are found, then these
observations can be discarded as isolated/untrusted and the
search can continue. Thus, such approach requires to define a
quorum of observations before using them to build the surface
representation. The quorum of observations can then be
averaged to produce a consensus surface. As an improvement
over using an equally weighted voting scheme, a confidence
value is assigned to each input surface triangle: higher values
mean that corresponding vertices are less noisy. In this work,
the surface points/triangles from a range image have been
weighted by the cosine of the angle between the viewing
direction and the surface (triangle) normal. This is simply
computed by following formula:

nv ˆˆ ⋅=ω (1)

where v̂ and n̂ are the viewing direction and normal,
respectively, of the given triangle.
An example describing the computation of the Consensus
surface is shown in figure 4. Here, assuming that three meshes
are available and denoted with x the voxel center, in the first

step the closest point P1 on mesh 1 is found. Then P2 and P3,
respectively on mesh 2 and mesh 3, are searched for as closest
points to P1. Computing the weighted average of these three
points results in the consensus surface point PC1. In the same
way points PC2 and PC3 are determined and if all of them have
a weight higher than the threshold quorum they are considered
valid and point closets to x is kept (here PC1), while the others
are discarded. In case none of the points Pi has a weight higher
than the quorum, then the point with the highest weight among
the three is chosen as consensus surface point, in order to reduce
the influence of the noise.

Figure 4: Example of the computation of the points belonging to

the consensus surface.

Basically the consensus surface algorithm allows to build a
surface representation in terms of an implicit distance function
D(x) = s, considering as surface points the average of the points
belonging to overlapping meshes. Of course, in case where only
one mesh is present (i.e. no overlap is present), then the
consensus surface will be described by the current mesh.
An example of the computation of such consensus surface for
two meshes is shown in figure 5. Here the points of the resulting
surface computed using only one mesh (i.e. outside of the
overlapping area) are not displayed.

2.3. The Octree representation

In order to assign the samples of the distance function D(x) to
the voxels, a bounding box enclosing the object is firstly
established and then the corresponding volume is subdivided in
voxels of convenient size.

 (a) Mesh 1 (b) Mesh 2

 (c) Consensus surface (d) Detail

Figure 5: Example of computation of the consensus surface

from 2 meshes.

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

The bounding volume should be scanned step by step: for each
voxel close enough to the surface the distance D(x) from the
current voxel center is calculated and assigned to it. Of course,
to achieve desired accuracy a dense sampling of the volume has
to be used . Since the memory requirements of a volume grid is
cubic with respect to the density of the sampling for volumetric
modeling, the first thing that gets sacrificed is accuracy.
Indeed, a first problem with a voxel grid representation is that
the number of voxels is n3 where each axis of the volume is
discretized into n elements. This affects the achievable accuracy
since the dimension should be chosen to be small enough that
the grid can fit in memory: it is easy to reach memory limits
with less powerful computers. In addition to storage cost, one
should remember that for each voxel the signed distance must
be computed; thus, the number of computations of the signed
distance function D(x) will be cubic as well. Specifically,
computation resources are wasted by computing signed
distances in parts of the volume that are distant from the
surface. On the other hand, the only voxels that need to be
examined are those near the surface, a small fraction of the
entire volume grid.
Therefore to optimize the procedure in terms of memory
requirements and execution time the octree data structure has
been employed. Octrees were developed as an efficient way for
representing 3D occupancy grids for computer graphics and
CAD modeling. Basically, an octree is a hierarchical tree data
structure where each leaf represents a volume in 3D space and
each of them can have eight childs, what corresponds to divide a
given volume into eight octants. This scheme can be repeated, if
necessary, to any level of subdivision desired. An example of
the octree structure is shown in figure 6.
Octrees can be used to efficiently represent the object’s surface
since the sampling resolution can be adjusted to the level of
detail necessary at each region of the volume. Indeed with
octrees it is possible to sample finely near the surface and
coarsely away from it (figure 7).

Figure 6: Octree-based subdivision of a volume and resulting
octants

Figure 7: 2D slice of an octree representation of a simple
surface.

The octree representation solves both the accuracy and the
efficiency problems while keeping the algorithm

implementation simple. Instead of iterating over all elements of
the voxel grid, a recursive algorithm is applied on an octree that
samples more finely in octants only when necessary. Basically
each node (i.e. the cube) of the hierarchical tree is assigned a
value specifing one out of three possible states: inside, outside
or intersecting the object’s surface. The tree is recursively
visited in such a way that if a node is labeled as intersecting,
then each of his eight childs is examinated. This search
continues until the maximum resolution allowed for the volume
subdivision is reached. The intersection state is determined by
evaluating if a node of the mesh of the range view exists inside
the voxel. In order to take into account even the case where all
the vertices of an intersecting triangle lie outside of the voxel,
the check is performed using a cube whose original lateral
dimension d is slightly expandend to d+f. The value of this
parameter is set by comparing the mesh resolution rm with d. If
rm< d the voxel size is increased by f = 2�d, while if rm > d,
then a value of f = 2� rm is set to be sure that triangle vertices
fall inside the voxel. To interpolate the zero crossings properly,
the implicit distance for the voxel containing the surface (the
zero crossing) and for all voxels neighboring this voxel are
needed. However, since in the octree structure it is not possible
to detect a neighbor “leaf” cube, close to the one currently being
processed, the distance D(x) is computed from all the eight
vertices of the cube instead from the voxel center only.
Therefore, the octree-based subdivision of the volume enclosed
by the bounding box is examined and the distance function D(x)
is computed only for the eight vertices of the voxels belonging
to the last resolution level, as they will likely be the closest ones
to the surface.
The octree in practice reduces the O(n3) storage and
computation requirement to O(n2), where n denotes the number
of voxel used for the volume subdivision. This is because the
surfaces of 3D objects are, in general, 2D manifolds in a 3D
space. Figure 8 shows an example of the application of the
octree subdivision method to a little statue, while in table 1 the
results obtained accordingly to various voxel sizes are reported.
It should be noted that if the number of voxel per side is
doubled, then the total number of voxel grows by eight times
while the number of voxels actually examined in the last
resolution level grows by four times only. This demonstrate that
the computation requirements reduce to O(n2) employing the
octrees.

 (a) (b)

Figure 8: Cross section (b) of the statue (a) showing the octree-

based volume scanning.

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

Table 1: Relationship between visited voxels and voxel
resolution

3. THE MARCHING CUBES ALGORITHM

Once the volume enclosed by the bounding box has been
sectioned with the octrees and he distance function D(x) has
been sampled at the eight vertices of each octant, a triangulated
mesh representation of the object’s surface can be easily
generated through the marching cubes algorithm, developed by
Lorensen and Cline [Lorensen et al., 1987]. Basically, each
vertex of an octant will be classified as, “outside” or “inside”,
by comparing the previously computed value of the function
D(x) with a threshold s. Denoting with V a vertex and assuming
s = 0, the rule of this classification becomes:

if DV (x) > 0 → State(V) = 1 → " outside"
 (2)
if DV (x) < 0 → State(V) = 0 → "inside"

In this way it is straightforward to code how each triangulated
range view intersects a cube. Then, a global mesh is built by
placing a triangle vertex on each side of the cube whose two
vertices have different states, 1 and 0. This means indeed that a
triangle of a range view is intersecting such cube of the octree
structure. The positon of the triangle veretx is computed by
interpolation of the distance values assigned to the cube vertices
of the cube. Afterthat, those new vertices are joined together to
form triangles in such a way that side of a cube connecting two
vertices having state 1 and state 0 should intersect a triangle.
Therefore “inside” and “outside” vertices of the octrees are
always separated by a surface (triangle). Though the possible
configurations for the combinations of the 2 states for each cube
are 28 = 256, taking into account rototranslations and
simmetries of a cube the actual number is reduced to 15
different cases, which are partly displayed in figure 9.
The method proposed by Lorensen and Cline presents however
some ambiguities when different triangulating options are
allowed. For example in the case of a voxel facet having two
inside and two outside vertices lying on diagonally opposite
sides(figure 10), the triangulation can be ccarried out in
different ways. Such ambiguities can be however easily solved
for by introducing eight extra cases, as suggested by Shoeb
[Shoeb, 1998], where the configurations with inverted vertices
are not considered equivalent.

4. TEST AND RESULTS

The method described in previous sections aimed to build a
triangulated mesh from a set of registered range views has been
applied to a set of 12 scans acquired with an optical laser
scanner (figure 11). In order to perform the triangulation with
the marching cubes algorithm, a table containing all the 256
possible configurations was set up. Given a voxel and the values
of the distance function D(x) assigned to its eight vertices the
generation of the triangles is straightforward. The configuration
corresponding to the actual values is searched for along the

table and the vertices of the new triangles are placed along the
side of the cube according to the strategy described in the
previous section. For the test, an average scan resolution of 0.2
mm was chosen. Figure 12 shows the results of the application
of the consensus surface and of the marching cubes for three
different choices of the mesh resolution, i.e. 0.93 mm, 0.45 mm
and 0.22 mm respectively in (a), (b) and (c).

5. CONCLUSIONS

In this paper a volumetric method for range data integration has
been presented. Through the use of consensus surface, octree
representation and marching cubes a set of well aligned 3D
views can be successfully integrated in order to build a
triangulated mesh that best approximate the actual object’s
surface, sampled by an optical laser scanner. The method is able
to take into account all the input data (points of the range
views), while reducing the effect of the noise, tipically due to
surface sampling, sensor measurements and registration errors.
Results of test performed on a real object (head of a little statue)
revealed that the algorithm is robust against noise and quite
flexible: by varying a few critical parameters it is possible to
adapt it to the input data configuration. For example, setting up
the voxel size allows for the choice of the most suited mesh
resolution; changing the threshold values for the angle and
distance between two neighbor range view points, according to
the input data, allows to better discriminate if two points of two
different 3D views belong to the same surface portion.
Similarly, the value of the weights can be set accordingly with
the input data in order to produce a surface without
discontinuities or spurious elements, whic h can be present in
the original scans.

ACKNOWLEDGMENTS

This work has been accomplished in the context of the National
Research Project titled “The Cultural Heritage risk map: survey,
georeferencing, monitoring and multiscale modeling”. National
coordinator Prof. C. Monti, local coordinator Prof. A. Vettore.

REFERENCES

[1] Cline H. E., Lorensen W.E., 1987. Marching cubes: a high
resolution 3d surface construction algorithm. Computer
Graphics, 21(4):163–168.

[2] Friedman J. H., Bentley J., Finkel R., 1977. An
algorithm

for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3), pp. 209-226.

[3] Ikeuchi K., Wheeler D., Sato Y., 1998. Consensus surfaces
for modeling 3d objects from multiple range images. Proc. of
ICCV 9’98, pp. 917–924.

[4] Shoeb, 1998. Improved marching cubes,
http://enuxsa.eas.asu.edu/~shoeb/graphics/improved.html.

[5] Soucy M, Laurendeau D., 1992. Multi-resolution surface
modelling from multiple range views. Computer Graphics,
Proc. of IEEE CVPR’92, pp. 348–0353.

[6] TurkG., Levoy M, 1994. Zippered polygon meshes from
range images. Computer Graphics, SIGGRAPH 94 Conference
Proceedings, pp. 311–318.

________CIPA 2005 XX International Symposium, 26 September – 01 October, 2005, Torino, Italy________

[7] Wheeler M. D., 1996. Automatic Modeling and
Localization for Object Recognition, PhD Thesis, Carnagie
Mellon University.

Figure 9: Example of possible triangle/cube configurations

(a)

 (b)

Figure 10: Ambigous (a) and extra marching cube
configurations (b)

Figure 11: A set of 6 out of the 12 range images employed

(a)

(b)

 (c)

Figure12: Examples of meshes generated at different
resolutions; 0.93 mm (a), 0.45 mm (b), 0.22 mm (c)

