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ABSTRACT  
 
In the last years, measuring sensors like the TOF or optical-based terrestrial laser scanners have been more and more increasingly 
used, given their capability to acquire the 3D geometry of the surveyed object. Applications for these systems span among different 
fields, such as industry, medicine, land management, heritage and VR environments. Regardless long-range or close-range laser 
scanner was employed, two follo wing steps need to be performed in order to reconstruct the object shape: range image registration 
and integration. The former allow for “tailoring” together the acquired point clouds, representing a “view” of the object surface as 
sampled by the laser sensor. Then, after all views have been aligned each other, a unique representation of the object surface is 
generated through the integration of those 3D views. At this stage several factors prevent from building the descriptive surface by 
simple connection of the range images: non-uniform density sampling, measuring and registration errors. To solve for such modeling 
issues, a volumetric approach has been devised for the generation of a mesh, i.e to create a surface representation from range data 
acquired by an optical triangulation laser scanner. The developed method is based on the “consensus surface” concept introduced by 
Wheeler, Sato and Ikeuchi, by which some kind of errors of the range images can be better identified and corrected. Then it has been 
refined by integration with the so-called “Marching cubes” algorithm, a well used surface generation procedure in the field of 
Computer Graphics. Finally, the proposed method has been completed with the development of a tool for hole-filling , though its 
application is limited to little holes with enough regular edges. Pros and cons along with the results of our meshing algorithm, applied 
to a little statue, will be presented as well.  
 

1. INTRODUCTION 
 
Nowadays, terrestrial laser scanners are playing a more and 
more growing role in the field of survey systems, given their 
capability to acquire in relative short time the 3D geometry of a 
real object. Applications for these measuring sensors span 
among different fields, such as industry, medicine, land 
management, heritage and VR environments. For example, in 
reverse engineering and quality control 3D models are 
employed to assess the matching of the product with the original 
design, virtual museums are created and filled with 3D models, 
whose real counterparts could be physically located even at far 
distances each other. Parts of the human body, like teeth, feet or 
the bust, are often surveyed by means of optical laser scanners 
in order to get a detailed 3D model to support and optimize the 
application of correcting devices. Lately, virtual environments 
filled up with 3D representations of statues, bas-relieves and 
archaeological findings constitute an interesting way for remote 
users to get a closer interaction with Cultural Heritage objects 
located all around the world.  
Sensors suited for 3D data acquisition can be classified in two 
main groups: contact and non-contact. The latter class, 
composed by laser scanner devices, can be further subdivided 
according the employed measuring principle and the operating 
range: optical scanners, like triangulation or pattern-based, and 
Time of Flight (TOF) sensors. Non-contact sensors allow for 
object surveying without the need to get in touch with it, what it 
is often the case when dealing with ancient and valuable 
sculptures or fragile pieces.  
After data acquisition, regardless the kind of laser sensor has 
been used, two following steps need to be performed, in order to 
reconstruct the object shape: range image registration and 
integration. The former allow for “tailoring” together the 
various point clouds, representing a “view” of the object surface 
as sampled by the laser sensor. Then, after all views have been 
aligned each other, a unique representation of the object surface 
is generated through the integration of those views. At this stage 
several factors prevent from building the descriptive surface by 
simple connection of the range images: non-uniform density 
sampling, measuring errors and registration errors. For instance, 
during data acquisition, due to the shape complexity and sensing 

device capabilities, some object portions are described with 
more range images than other (though a little overlap between 
view pairs is required for the registration stage). This leads to 
different point density sampling along the whole object, that 
should be taken into account by the meshing algorithm in order 
to provide an optimized surface representation of the object. 
Moreover, registration errors allow for residual distances 
between overlapping regions, which have to be eliminated to 
correctly model such parts of the object as a continuous surface. 
In this work a volumetric approach has been devised for the 
generation of a mesh, i.e. to create a surface representation from 
range data acquired by an optical triangulation laser scanner. 
Volumetric algorithms represent a relative new method to the 
mesh generation problem and seem to be very promising tools 
given their capability to solve for some issues affecting 
“classical” methods, like the Delaunay Triangulation or Soucy 
& Laurendeau approach [Soucy et al, 1996] or the “zippering” 
procedure developed by Turk & Levoy, as well [Turk et al., 
1994].  
The developed method is based on the “consensus surface” 
concept introduced by Wheeler, Sato and Ikeuchi [Wheeler et 
al., 1998], by which some kind of errors of the range images can 
be better identified and corrected. Then it has been refined by 
integration with the so-called “Marching cubes” algorithm, a 
well used surface generation procedure in the field of Computer 
Graphics [Cline et al., 1987]. Finally, the proposed method has 
been completed with the development of a tool for hole-filling , 
though its application is limited to little holes with enough 
regular edges. Pros and cons along with the results of our 
meshing algorithm, applied to a little statue, will be presented as 
well.  

 
 

2. THE CONSENSUS SURFACE ALGORITHM  
 
Let’s suppose that m range views (Mk , k=1,2,…,m) have been 
acquired by an optical laser scanner (range camera) in order to 
build a 3D model of the surveyed object. Such range views 
cover the whole object’s surface and present enough overlap 
each other in order to be successfully aligned so that a unique 
point cloud out of the whole measured volume can be obtained. 
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Assuming that the set of acquired m point clouds have been 
already aligned and triangulated, the next step to be addressed 
in the 3D modeling pipeline is the view integration, i.e. the 
building of an object’s surface description (mesh) starting from 
the set of registered range views. Regardless the nature of the 
adopted method, a meshing algorithm should provide following 
basic features: flexibility, noise robustness and data averaging. 
The former requirement means that the algorithm should be able 
to work with any kind of input data, regardless their geometric 
configuration. Measured data are always affected by different 
forms of noise, in this case a meshing algorithm is required to 
detect and discard too noisy data, which likely don’t belong to 
the actual object’s surface. Then, the algorithm should exploit 
the data redundancy provided by the overlap between range 
view pairs, by performing a sort of measurements averaging in 
order to reduce the noise effect due to the unavoidable 
acquisition and registration error.  
Taking many triangulated surfaces in 3D space and converting 
them to a triangle patch surface model is however a difficult 
task. The problem is that it is difficult to determine how to 
connect triangles from different surfaces without knowing the 
surface beforehand. Not only the determination of 
connectedness becomes more difficult, but the algorithm must 
also consider how to eliminate the noise and small alignment 
errors from the resulting model.  
However, it seems that this issue can be solved for by resorting 
to volumetric methods, which make the surface-merging 
problem more tractable, as demonstrated by several researchers.  
 
2.1 The Volumetric modeling 
 
In the field of surface generation methods, occupancy grids are 
the earliest form of volumetric representation. An occupancy 
grid is formed by discretizing a volume into many voxels and 
noting which voxels intersect the object. The result is usually a 
coarse model that appears to be created by sticking a set of 
cubes together to form the object shape. Of course, using small 
enough cubes, the shape will look fine, but this becomes a 
problem since the amount of memory required will be O(n3 

) 
where the volume is discretized into n slices along each 
dimension. Fortunately, an algorithm developed for graphics 
modeling applications has made volumetric modeling a bit more 
useful by virtually eliminating the blocky nature of occupancy 
grids. This algorithm is called the marching-cubes algorithm 
[Cline et al., 1987]. The representation is slightly more 
complicated than the occupancy grid representation. Instead of 
storing a binary value in each voxel to indicate if the cube is 
empty or filled, the marching-cubes algorithm requires the data 
in the volume grid to be samples of an implicit surface. In each 
voxel, the value D(x) of the signed distance from the center 
point of the voxel, x, to the closest point on the object’s surface 
is stored. The sign indicates whether the point is outside, f(x) > 
0, or inside, D(x) < 0, the object’s surface, while D(x) = 0 
indicates that x lies on the surface of the object. The marching-
cubes algorithm constructs a surface mesh by “marching” 
around the cubes while following the zero crossings of the 
implicit surface D(x) = 0. The signed distance allows the 
marching-cubes algorithm to interpolate the location of the 
surface with higher accuracy than the resolution of the volume 
grid. Figure 1 shows an example of the interpolation. 
 
2.2 Building the Consensus surface  
 
Given a number of triangle sets (surface meshes) which are 
aligned wit h respect to the desired coordinate system, the 
problem now is taking such triangulated surfaces and converting 
them to a triangle patch surface model. This task is made 

difficult by the fact that many surfaces are available, and some 
elements of those surfaces do not belong to the object of interest 
but rather are artifacts of the image acquisition process or 
background surfaces.   

 
 

Figure 1: Example of zero-crossing interpolation from the grid 
sampling of an implicit surface. 

 
The method applied in this work to solve for the range view 
integration resorts to the consensus-surface algorithm, 
developed by M. D. Wheeler, which is based on the 
computation of the signed distance function f(x) for arbitrary 
points x from given N triangulated surface patches of various 
views of the object surface. In this section the main features of 
this algorithm are discussed, however more details can be found 
in [Wheeler, 1996] and [Wheeler et al., 1998]. As described 
above, the positive value of D(x) indicates the point x is outside 
the object surface, a negative value indicates that x is inside, 
and a value of zero indicates that x lies on the surface of the 
object. Therefore, once distance values D(x) have been assigned 
to each voxel, the surface representation can be extracted 
computing the isosurface implicitly defined by D(x)=0 with the 
marching-cubes method. The computation of D(x) can be 
subdivided into two following steps:  
1. Compute the magnitude: compute the distance |D(x)| to the 

nearest object surface from x.  
2. Compute the sign: determine whether the point is inside or 

outside of the object  
However, this simple approach cannot be successfully applied 
to real data given the unavoidable presence of noise and 
extraneous data. For example, it is not uncommon to see 
triangles sticking out of a surface or other triangles that do not 
belong to the object. This can occur due to sensor noise, 
quantization, specularities and other possibly systematic 
problems of range imaging. Generally, three main kind of errors 
affect the quality of the resulting 3D model, as shown in figure 
2: sampling, measuring and alignment error. 
  

 
(a)                                (b)                          (c) 

  
Figure 2: Example of data error due to sampling (a); sensor 

measurement (b); alignment (c). 
 
During data acquisition the object is surveyed from different 
point of views in order to capture its whole shape. Moreover, 
corresponding range images should present a certain level of 
overlap for the point cloud alignment to be successfully. Despite 
overlap means that the same portion of an object’s surface is 
surveyed at least twice, it is unlikely that the measuring sensor 
will capture exactly the same points as in the previous adjacent 
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scan. Correspondingly, two triangles of two different meshes 
representing the same surface wont be never coincident. A 
further error source is introduced by the laser sensor itself: 
range measurements can be modeled as gaussian distributions 
along the thre sensor axes (X, Y, Z). The higher error variance 
will be along the depth (usually the Z component), being this 
one the weakest measuring direction of an optical laser scanner. 
Finally, the registration step contributes with a residual 
alignment error which tends to grow with the number of range 
views to be pairwise registered. This issues make it very easy to 
infer the incorrect distance and more critically the incorrect 
sign, which will result in very undesirable artifacts in the final 
surface. For example, figure 3 shows how a single noisy bump 
from one view can result in a bump on the final model. 
Moreover, a badly oriented triangle can create an implicit 
distance with the incorrect sign. This results in a hole rising out 
of the surface. 
  

 

 
Figure 3: Example of the effect on the final model of a noisy 

bump in the range data 
 
As proposed by Wheeler, the solution to these problems is to 
estimate the surface locally by averaging the observations of the 
same surface. The trick is to specify a method for identifying 
and collecting all observations of the same surface.  
Nearby observations are compared using their location and 
surface normal. If the location and normal are within a 
predefined error tolerance (determined empirically), they can be 
considered as observations of the same surface. Given a point 
on one of the observed triangle surfaces, other nearby 
observations from other views, which are potentially 
observations of the same surface, can be searched for in the 3D 
space. This task can be accomplished efficiently using k-d trees 
[Friedman et al., 1977] which is a structure for storing data of 
arbitrary dimensions for optimal nearest neighbors search. If an 
insufficient number of observations are found, then these 
observations can be discarded as isolated/untrusted and the 
search can continue. Thus, such approach requires to define a 
quorum of observations before using them to build the surface 
representation. The quorum of observations can then be 
averaged to produce a consensus surface. As an improvement 
over using an equally weighted voting scheme, a confidence 
value is assigned to each input surface triangle: higher values 
mean that corresponding vertices are less noisy. In this work, 
the surface points/triangles from a range image have been 
weighted by the cosine of the angle between the viewing 
direction and the surface (triangle) normal. This is simply 
computed by following formula:  
 

nv ˆˆ ⋅=ω        (1) 
 
where v̂  and n̂  are the viewing direction and normal, 
respectively, of the given triangle.  
An example describing the computation of the Consensus 
surface is shown in figure 4. Here, assuming that three meshes 
are available and denoted with x the voxel center, in the first 

step the closest point P1 on mesh 1 is found. Then P2 and P3, 
respectively on mesh 2 and mesh 3, are searched for as closest 
points to P1. Computing the weighted average of these three 
points results in the consensus surface point PC1. In the same 
way points PC2 and PC3 are determined and if all of them have 
a weight higher than the threshold quorum they are considered 
valid and point closets to x is kept (here PC1), while the others 
are discarded. In case none of the points Pi has a weight higher 
than the quorum, then the point with the highest weight among 
the three is chosen as consensus surface point, in order to reduce 
the influence of the noise. 
  

 
 
Figure 4: Example of the computation of the points belonging to 

the consensus surface. 
 
Basically the consensus surface algorithm allows to build a 
surface representation in terms of an implicit distance function 
D(x) = s, considering as surface points the average of the points 
belonging to overlapping meshes. Of course, in case where only 
one mesh is present (i.e. no overlap is present), then the 
consensus surface will be described by the current mesh.  
An example of the computation of such consensus surface for 
two meshes is shown in figure 5. Here the points of the resulting 
surface computed using only one mesh (i.e. outside of the 
overlapping area) are not displayed.  
 
2.3. The Octree representation  
 
In order to assign the samples of the distance function D(x) to 
the voxels, a bounding box enclosing the object is firstly 
established and then the corresponding volume is subdivided in 
voxels of convenient size.  

 
                       (a) Mesh 1                        (b) Mesh 2  

 
           (c) Consensus surface                  (d) Detail  

 
Figure 5: Example of computation of the consensus surface 

from 2 meshes. 
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The bounding volume should be scanned step by step: for each 
voxel close enough to the surface the distance D(x) from the 
current voxel center is calculated and assigned to it. Of course, 
to achieve desired accuracy a dense sampling of the volume has 
to be used . Since the memory requirements of a volume grid is 
cubic with respect to the density of the sampling for volumetric 
modeling, the first thing that gets sacrificed is accuracy.  
Indeed, a first problem with a voxel grid representation is that 
the number of voxels is n3 where each axis of the volume is 
discretized into n elements. This affects the achievable accuracy 
since the dimension should be chosen to be small enough that 
the grid can fit in memory: it is easy to reach memory limits 
with less powerful computers. In addition to storage cost, one 
should remember that for each voxel the signed distance must 
be computed; thus, the number of computations of the signed 
distance function D(x) will be cubic as well. Specifically, 
computation resources are wasted by computing signed 
distances in parts of the volume that are distant from the 
surface. On the other hand, the only voxels that need to be 
examined are those near the surface, a small fraction of the 
entire volume grid.  
Therefore to optimize the procedure in terms of memory 
requirements and execution time the octree data structure has 
been employed. Octrees were developed as an efficient way for 
representing 3D occupancy grids for computer graphics and 
CAD modeling. Basically, an octree is a hierarchical tree data 
structure where each leaf represents a volume in 3D space and 
each of them can have eight childs, what corresponds to divide a 
given volume into eight octants. This scheme can be repeated, if 
necessary, to any level of subdivision desired. An example of 
the octree structure is shown in figure 6.  
Octrees can be used to efficiently represent the object’s surface 
since the sampling resolution can be adjusted to the level of 
detail necessary at each region of the volume. Indeed with 
octrees it is possible to sample finely near the surface and 
coarsely away from it (figure 7). 
  

 
 

Figure 6:  Octree-based subdivision of a volume and resulting 
octants 

 

 
 

Figure 7: 2D slice of an octree representation of a simple 
surface. 

 
The octree representation solves both the accuracy and the 
efficiency problems while keeping the algorithm 

implementation simple. Instead of iterating over all elements of 
the voxel grid, a recursive algorithm is applied on an octree that 
samples more finely in octants only when necessary. Basically 
each node (i.e. the cube) of the hierarchical tree is assigned a 
value specifing one out of three possible states: inside, outside 
or intersecting the object’s surface. The tree is recursively 
visited in such a way that if a node is labeled as intersecting, 
then each of his eight childs is examinated. This search 
continues until the maximum resolution allowed for the volume 
subdivision is reached. The intersection state is determined by 
evaluating if a node of the mesh of the range view exists inside 
the voxel. In order to take into account even the case where all 
the vertices of an intersecting triangle lie outside of the voxel, 
the check is performed using a cube whose original lateral 
dimension d is slightly expandend to d+f. The value of this 
parameter is set by comparing the mesh resolution rm with d. If 
rm< d the voxel size is increased by f = 2�d, while if rm > d, 
then a value of f = 2� rm is set to be sure that triangle vertices 
fall inside the voxel. To interpolate the zero crossings properly, 
the implicit distance for the voxel containing the surface (the 
zero crossing) and for all voxels neighboring this voxel are 
needed. However, since in the octree structure it is not possible 
to detect a neighbor “leaf” cube, close to the one currently being 
processed, the distance D(x) is computed from all the eight 
vertices of the cube instead from the voxel center only. 
Therefore, the octree-based subdivision of the volume enclosed 
by the bounding box is examined and the distance function D(x) 
is computed only for the eight vertices of the voxels belonging 
to the last resolution level, as they will likely be the closest ones 
to the surface.  
The octree in practice reduces the O(n3) storage and 
computation requirement to O(n2), where n denotes the number 
of voxel used for the volume subdivision. This is because the 
surfaces of 3D objects are, in general, 2D manifolds in a 3D 
space. Figure 8 shows an example of the application of the 
octree subdivision method to a little statue, while in table 1 the 
results obtained accordingly to various voxel sizes are reported. 
It should be noted that if the number of voxel per side is 
doubled, then the total number of voxel grows by eight times 
while the number of voxels actually examined in the last 
resolution level grows by four times only. This demonstrate that 
the computation requirements reduce to O(n2) employing the 
octrees. 
  

 
          (a)                                                    (b)  

 
Figure 8: Cross section (b) of the statue (a) showing the octree-

based volume scanning. 
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Table 1: Relationship between visited voxels and voxel 
resolution 

 
 
 

3. THE MARCHING CUBES ALGORITHM  
 
Once the volume enclosed by the bounding box has been 
sectioned with the octrees and he distance function D(x) has 
been sampled at the eight vertices of each octant, a triangulated 
mesh representation of the object’s surface can be easily 
generated through the marching cubes algorithm, developed by 
Lorensen and Cline [Lorensen et al., 1987]. Basically, each 
vertex of an octant will be classified as, “outside” or “inside”, 
by comparing the previously computed value of the function 
D(x) with a threshold s. Denoting with V a vertex and assuming 
s = 0, the rule of this classification becomes:  
 
if DV ( x) > 0 → State(V) = 1 → " outside"  
        (2) 
if DV ( x) < 0 → State(V) = 0 → "inside"  
 
In this way it is straightforward to code how each triangulated 
range view intersects a cube. Then, a global mesh is built by 
placing a triangle vertex on each side of the cube whose two 
vertices have different states, 1 and 0. This means indeed that a 
triangle of a range view is intersecting such cube of the octree 
structure. The positon of the triangle veretx is computed by 
interpolation of the distance values assigned to the cube vertices 
of the cube. Afterthat, those new vertices are joined together to 
form triangles in such a way that side of a cube connecting two 
vertices having state 1 and state 0 should intersect a triangle. 
Therefore “inside” and “outside” vertices of the octrees are 
always separated by a surface (triangle). Though the possible 
configurations for the combinations of the 2 states for each cube 
are 28 = 256, taking into account rototranslations and 
simmetries of a cube the actual number is reduced to 15 
different cases, which are partly displayed in figure 9.  
The method proposed by Lorensen and Cline presents however 
some ambiguities when different triangulating options are 
allowed. For example in the case of a voxel facet having two 
inside and two outside vertices lying on diagonally opposite 
sides(figure 10), the triangulation can be ccarried out in 
different ways. Such ambiguities can be however easily solved 
for by introducing eight extra cases, as suggested by Shoeb 
[Shoeb, 1998], where the configurations with inverted vertices 
are not considered equivalent.  

 
 

4. TEST AND RESULTS  
 
The method described in previous sections aimed to build a 
triangulated mesh from a set of registered range views has been 
applied to a set of 12 scans acquired with an optical laser 
scanner (figure 11). In order to perform the triangulation with 
the marching cubes algorithm, a table containing all the 256 
possible configurations was set up. Given a voxel and the values 
of the distance function D(x) assigned to its eight vertices the 
generation of the triangles is straightforward. The configuration 
corresponding to the actual values is searched for along the 

table and the vertices of the new triangles are placed along the 
side of the cube according to the strategy described in the 
previous section. For the test, an average scan resolution of 0.2 
mm was chosen. Figure 12 shows the results of the application 
of the consensus surface and of the marching cubes for three 
different choices of the mesh resolution, i.e. 0.93 mm, 0.45 mm 
and 0.22 mm respectively in (a), (b) and (c).  
 
 

5. CONCLUSIONS 
 
In this paper a volumetric method for range data integration has 
been presented. Through the use of consensus surface, octree 
representation and marching cubes a set of well aligned 3D 
views can be successfully integrated in order to build a 
triangulated mesh that best approximate the actual object’s 
surface, sampled by an optical laser scanner. The method is able 
to take into account all the input data (points of the range 
views), while reducing the effect of the noise, tipically due to 
surface sampling, sensor measurements and registration errors. 
Results of test performed on a real object (head of a little statue) 
revealed that the algorithm is robust against noise and quite 
flexible: by varying a few critical parameters it is possible to 
adapt it to the input data configuration. For example, setting up 
the voxel size allows for the choice of the most suited mesh 
resolution; changing the threshold values for the angle and 
distance between two neighbor range view points, according to 
the input data, allows to better discriminate if two points of two 
different 3D views belong to the same surface portion. 
Similarly, the value of the weights can be set accordingly with 
the input data in order to produce a surface without 
discontinuities or spurious elements, whic h can be present in 
the original scans.  
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Figure 9: Example of possible triangle/cube configurations 
  

 
(a)  

 
                                                  (b)  
 

Figure 10: Ambigous (a) and extra marching cube 
configurations (b) 

 
 
 
 
 
 
 

 
 

Figure 11:  A set of 6 out of the 12 range images employed 
 

 
(a) 

 

 
(b) 

 

 
 (c)  

 
Figure12: Examples of meshes generated at different 
resolutions; 0.93 mm (a), 0.45 mm (b), 0.22 mm (c) 

 


