

22nd CIPA Symposium, October 11-15, 2009, Kyoto, Japan

SEAMLESS USAGE OF USER’S DATABASES
IN ARCHAEOLOGICAL DATABASE SYSTEM

T. Hochin a, *, F. Kobayashi a, K. Tsuji a, H. Nomiyaa

a Division of Information Science, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto,

606-8585 Japan - hochin@kit.ac.jp

KEY WORDS: Archaeological database, User’s database, View, PHP, Database system

ABSTRACT:

Archaeological database system is useful because the kind of relics wanted to be displayed could dynamically be changed by
specifying the retrieval condition. The system, however, often enforces the usage of the database used in this system, which is called
the system database, on the user. The user must store their data into the system database. This is a very cumbersome and heavy task
because the users usually hold their archaeological data in their own databases, whose structures are different from that of the system
database. In order to overcome this inconvenience, a method of using the user’s database in the archaeological database system is
proposed. We have to overcome two problems. The first is the variety of database systems. In order to address to this kind of variety,
PHP Data Object (PDO) is used. The second problem is the variety of the structure of data. This problem is addressed to by using
the view mechanism. A view is a virtual table derived from one or more ordinary and/or virtual tables. The proposed method enables
users to use their own databases without re-storing data from their own database into the system database. This paper describes a
prototype archaeological database system that has been constructed.

* Corresponding author

1. INTRODUCTION

Information Communication Technology has been used in the
archaeological research area as well as the other areas.
Archaeological data have also been managed by using
computers. As the database management system is usually used
in the management of data on computers, archaeological data
have been managed by using the database management system.
Many archaeological database systems have been reported
(Oikawa 1997; Hachimura 1997; Yokoyama, Chiba 2002).
Some systems have been in public on the Web.
Archaeological data have often been managed with the
geographical information. The archaeological database system
is required to manage the geographical information as well as
the information of ruins and relics.
An archaeological database system, which retrieves
archaeological data according to the retrieval condition, and
displays the retrieval results in the list form and/or on maps, has
been constructed (Hochin, 2009). This kind of archaeological
database system is very useful. Archaeological data could be
analyzed from various points of views only by changing
retrieval condition. For example, relics appearing on a specific
layer could be reported in the list form. Distribution of pieces of
dishes could easily be obtained. Distribution of those of cups
could also be obtained easily.
The system, however, often enforces a user to store
archaeological data into a table in the system database. This is a
very cumbersome and heavy task because he/she usually holds
his/her archaeological data in the table of his/her own database,
whose structure is different from that of the system database.
This paper proposes a method of using the user’s database in
the archaeological database system. The proposed method could
overcome the inconvenience described above. To this end, two

problems have to be addressed to. The first is the variety of
database systems. In order to address to this kind of variety,
PHP Data Object (PDO) is used. We could access the databases
managed by any database system with the uniform way by
using PDO. The second problem is the variety of the structures
of data. This problem is addressed to by using the view
mechanism. By using views, the user’s data could be used as if
they were in the system database.
The remaining of this paper is as follows: Section 2 describes
archaeological database systems. Section 3 proposes a method
of using user’s data. Section 4 describes the prototype system.
Section 5 concludes this paper.

2. ARCHAEOLOGICAL DATABASE SYSTEM

Archaeological data are often managed by using commercial or
free database management system, e.g., ORACLE, MySQL,
SQLite. One of the merits of the usage of database management
system is the query functionality. Users can retrieve desired
data by specifying retrieval condition. The data satisfying the
retrieval condition are returned to the users. In this paper, the
system managing archaeological data by using database
management system is called the archaeological database
system.
We have constructed an archaeological database system for the
Ichijodani Asakura Clan Ruins in Japan. The Ichijodani
Asakura Clan Ruins are the ruins of the castle town of five
warring lords of the Asakura Family who ruled Echizen for 103
years (Fukui Prefectural Tourism Federation, 2009). The grand
castle town was founded 530 years ago in 1471 and developed a
graceful culture. However, when the Asakura Family was
defeated by Oda Nobunaga in 1573, the town was burned and

its long history came to an end. In 1967, excavation and
research started, uncovering the shape of the whole town,
including a house belonging to the lord, samurai residences,
temples, houses of merchants, houses of craft workers and
streets. This area is considered to be very important in the
Japanese archaeological research because this area remained as
it was. The area of the Ichijodani Asakura Clan Ruins is a
national historic site in Japan. About five thousands of remains
and about two million relics have appeared until now.
In the Ichijodani Asakura Clan Ruins, the information of relics
includes ruin identifiers, excavation area names, excavation
numbers, layer names, excavation dates, serial numbers of relic,
branch numbers of relic, major types of objects, types of objects,
and notes as follows:

1.

2.

3.

4.

5.

6.
7.

8.

9.

10.

11.

ruin identifier: The ruin identifier is the identifier of a
ruin. That of the Ichijodani Asakura Clan Ruins is
“9MI.”
excavation area name: This is a name of an
excavation area.
excavation number: This is a serial number of
excavation.
block identifier: The area of an excavation is
managed through blocks. A block is 3x3 square
meters. An example of this identifier is “NM23.”
layer name: This is a name of the layer where a relic
is found.
excavation date: This is a date of an excavation.
serial number of relic: This is the serial number of a
relic. This serial number begins at every excavation.
branch number of relic: This is an auxiliary number
put to the relics having the same serial number.
major type of object: Major types of objects are how
objects are made.
type of object: Types of objects include a cup, a dish,
a base, and so on.
note: Various notes on a relic could be described.

The information of relics described above is managed in the
table, whose name is “relics_detail_t,” in the archaeological
database system for the Ichijodani Asakura Clan Ruins. This
table has eleven columns, which correspond to the information
of relics described above. The structure of the table
relics_detail_t is as follows:

relics_detail_t (isekiID_c, chiku_c, jisu_c, kukaku_c, dosou_c,
date_c, number_c, subnumber_c, taibetsu_c,
kisyu_c, bikou_c)

The system includes other tables as well as this table. These are
of the information on areas, maps, and so on. The details of
them are omitted because these are not important in this paper.
Figure 1 is a window for specifying retrieval condition on relics
in the archaeological database system for the Ichijodani
Asakura Clan Ruins, which supports only Japanese. Users could
specify retrieval condition on the desired relics as shown in Fig.
2. The retrieval result could be displayed on the map or in the
form of list. Figure 3 is an example of the retrieval result
displayed on the map. The colours of blocks change according
to the numbers of relics retrieved. Figure 4 is an example of the
retrieval result displayed in the form of list.
This system is useful because the kind of relics wanted to be
displayed could dynamically be changed by specifying the
retrieval condition. The system, however, enforces the usage of
the database used in this system, which is called the system
database, on the user. The user must store their data into the
system database. This is a very cumbersome and heavy task
because the users usually hold their archaeological data in their
own databases, whose structures are different from that of the
system database.

Figure 1. Window specifying retrieval condition.

Figure 2. Specifying retrieval condition.

Figure 3. Window of retrieval result displayed on a map.

Figure 4. Window of retrieval result displayed in the list form.

n instance object of

er’s data and that
f the data in the system database is required.

the relics is one or more than
ne as described in Appendix B.

er
t
relics (er_name, date,

number, subnumber, major, type, note)

3.3

3. METHOD OF USING USER’S DATA

3.1 Approaches

In order to overcome the inconvenience described in the last
section, a method of using the user’s database in the
archaeological database system is proposed. We have to
overcome two problems. The first is the variety of database
management systems. In order to address to this kind of variety,
PHP Data Object (PDO) is used. We could access the databases
managed by any database management system in the uniform
way by using PDO. Please refer to Appendix A for PDO. As
described in Appendix A, a variety of database management
systems could easily be used by using PDO. What we need is
only the changes of text strings in creating a
the class PDO as described in Appendix A.
The second problem is the variety of the structures of data. This
problem is addressed to by using the view mechanism. A view
is a virtual table derived from one or more ordinary and/or
virtual tables. A view can be used only by defining the view
with a kind of query. Storing data into a view is not required at
all. By using views, the user’s data could be used as if they
were in the system database. Please refer to Appendix B for the
view mechanism. In order to create views, specifying the
correspondence between the structure of the us
o

3.2 Defining views

The method of defining a view is described here. The CREATE
VIEW statement, which is the SQL statement for creating a
view, is different depending on whether the number of the user
tables having the information of
o

One table: This is the case that the information of the relics is
stored in a table in a user’s database. Let the name of a us
able be relics, and let this table have the following structure:

ruinID, area, exca_number, blockID, lay

where the columns ruinD, area, exca_number, blockID,
layer_name, date, number, subnumber, major, type, and note
correspond to the columns isekiID_c, chiku_c, jisu_c, kukaku_c,
dosou_c, date_c, number_c, subnumber_c, taibetsu_c, kisyu_c,
and bikou_c of the table relics_detail_t, respectively.
In this case, the CREATE VIEW statement is as follows:
CREATE VIEW relics_detail_t (isekiID_c, chiku_c, jisu_c,

kukaku_c, dosou_c, date_c, number_c,
subnumber_c, taibetsu_c, kisyu_c, bikou_c)

AS SELECT ruinID, area, exca_number, blockID, layer_name,
date, number, subnumber, major, type, note

FROM relics;

Two or more tables: This is the case that the information of
the relics is stored in more than one table in a user’s database.
Consider that a user has two tables, whose names are
excavation and relics. The table excavation contains the
information of excavation, while the table relics contains the
information of the relics. Let these tables have the following
structures:

excavation (ruinID, exca_number, area)
relics (ruinID, exca_number, blockID, layer_name, date,

number, subnumber, major, type, note)
where the columns of the table relics having the same names as
of the table excavation, which are ruinID and exca_number,
have the values of the columns of the table excavation.
In this case, these two tables have to be joined in defining a
view. The CREATE VIEW statement is as follows:
CREATE VIEW relics_detail_t (isekiID_c, chiku_c, jisu_c,

kukaku_c, dosou_c, date_c, number_c,
subnumber_c, taibetsu_c, kisyu_c, bikou_c)

AS SELECT e.ruinID, e.area, e.exca_number, r.blockID,
r.layer_name, r.date, r.number, r.subnumber,
r.major, r.type, r.note

FROM excavation e, relics r
WHERE e.ruinID = r.ruinID

AND e.exca_number = r.exca_number;
Please note that the CREATE VIEW clause, which is the part
before “AS SELECT”, is the same as in the case of one table.
The difference between the two cases is the SELECT statement
in the CREATE VIEW statement.

Missing columns: When the columns corresponding to those of
the table relics_detail_t do not exist in a user’s table, the system
handles the values of these columns as NULL, which means
that there is no value. For example, when the table relics in the
example of one table described above does not have the
columns area, blockID, subnumber, and note, so the table relics
has the following structure:

relics (ruinID, exca_number, layer_name, date, number,
major, type),

the CREATE VIEW statement becomes as follows:
CREATE VIEW relics_detail_t (isekiID_c, chiku_c, jisu_c,

kukaku_c, dosou_c, date_c, number_c,
subnumber_c, taibetsu_c, kisyu_c, bikou_c)

AS SELECT ruinID, NULL, exca_number, NULL,
layer_name, date, number, NULL, major, type,
NULL FROM relics;

Implementation

We have introduced the following three tables: user_t, userdb_t,
and replace_t. The table user_t is for the management of the
information on users. The table userdb_t is for managing the
information on users’ databases. The table replace_t has the

information of the mappings between the table relics_detail_t
and users’ tables.
The table user_t has the following structure:

user_t (userID_c, username_c, password_c)
where the column userID_c is the primary key of this table, the
column username_c is for a user’s name, and the column
password_c is for a user’s password.
The table userdb_t has the following structure:
userdb_t (userdbID_c, userID_c, dbms_c, location_c,

dbname_c, dbpass_c, dbuser_c, dbinfo_c)
where the column userdbID_c is the primary key of this table,
the column userID_c is of a value of the column userID_c of
the table user_t, and the columns dbms_c, location_c,
dbname_c, dbpass_c, dbuser_c, and dbinfo_c are the type of the
database management system, e.g., MySQL, SQLite, the
location where a database exists, the name of the database, the
password for the database, the user name for the database, and
the note of the database, respectively. The information of this
table is mainly used in using PDO.
The table replace_t has the following structure:
replace_t (replaceID_c, userdbID_c, isekiID_c, chiku_c,

jisu_c, kukaku_c, dosou_c, date_c, number_c,
subnumber_c, taibetsu_c, kisyu_c, bikou_c,
table_c, join_c)

where the column replaceID_c is the primary key of this table,
the column userdbID_c is of a value of the column userdbID_c
of the table userdb_t. The columns isekiID_c, chiku_c, jisu_c,
kukaku_c, dosou_c, date_c, number_c, subnumber_c,
taibetsu_c, kisyu_c, and bikou_c are for describing the
correspondence between the table relics_detail_t in the system
database and the user’s table in a user’s database. The names of
columns of the user’s table are stored into these columns. For
example, when the column exca_date of a user’s table
corresponds to the column date_c of the table relics_detail_t,
the name “exca_date” is stored into the column date_c of the
table replace_t. The column table_c is for the name of the
user’s table. When alias names to tables are wanted to be
specified, the alias names could also be specified. For example,
when the alias name “e” for the table excavation is watned to be
set as described in 3.2, the specification becomes “excavation
e.” When two or more tables have the information of the relics
in a user’s database, the names of all of the tables are specified
by separating the comma, and stored into the column table_c. In
this case, these tables must be joined. The join condition is
specified as the text string in the column join_c of the table
replace_t. In the example described in 3.2, the specification
becomes “e.ruinID = r.ruinID AND e.exca_number =
r.exca_number.”

4. PROTOTYPE SYSTEM

As the three tables user_t, userdb_t, and replace_t have been
introduced, the procedures managing the information in these
tables are required. The windows for these management
procedures could easily be implemented.
The windows for the management of the information in the
tables user_t, userdb_t, and replace_t are shown in Fig. 5, Fig.
6, and Fig. 7, respectively. The button “display” is for the
display of the information registered. After appropriate values
are specified into the text fields in the window, pressing the
button “register” results in the registration of the specified
values. The button “delete” is for the deletion of the
information.
A user could use several databases. The system provides the
functionality of selecting a database that the user wants to use.

The window for this purpose is shown in Fig. 8. This window
appears after a user enters into the system or after following the
link named “change DB” in the main menu appearing at the left
frame. A database used is decided by pressing the button “use
the select DB” after selecting a desired database. After the
database used is decided, the window for specifying the
retrieval condition as shown in Fig. 1 appears. When another
database or another table is wanted to be used, a user could
follow the link named “change DB” as described above. More
than one set of tables in a database could be used. For example,
a table relics_A and another one relics_B in a database could be
used, whereas the name of the link is “change DB.” The Note
information is convenient in identifying the table because the
current implementation shows only the information of databases
in the window shown in Fig. 8. We could not distinguish the
tables in a database.

Figure 5. Window for inserting the user information.

Figure 6. Window for inserting the user’s database information.

Figure 7. Window for inserting the mapping information.

Figure 8. Window for selecting a database.

A table in a database and a table in another database, however,
could not be registered into the system in the window shown in
Fig. 5. That is, a view could not be defined by using the tables
under the management of different database management
systems. Addressing to these issues is in the future work.

5. CONCLUDING REMARK

This paper proposed a method of using the user’s database in
the archaeological database system. Two kinds of varieties,
which are the variety of database management systems and that
of the structures of data, are addressed to. In order to address to
the variety of database management systems, PHP Data Object
(PDO) is used. We could access the databases managed by any
database management system in the uniform way by using PDO.
The problem of the variety of the structures of data is addressed
to by using the view mechanism. By using views, the user’s
data could be used as if they were in the system database. A
prototype archaeological database system that has been
constructed was described.
The prototype system is mainly for the Ichijodani Asakura Clan
Ruins. The application of this system to the other ruins is in the
future work. A view could not be defined by using the tables
managed by different database management systems.
Addressing to these issues is also in the future work.

References

References from Journals:
Hachimura, K., 1997. Databases in the Humanities. Information
Processing, 38(5), pp. 377-382 (in Japanese).

Hochin, T., Tsuji T., 2002. The Present and Future of
Archaeological Databases, The Journal of the Institute of
Electronics, Information, and Communication Engineers, 85(3),
pp.171-175 (in Japanese).

Hochin, T., 2009. An Implementation Method for Various
Aggregations of Archaeological Databases. Journal of
Computer Archaeology, 15(1-2), pp. 1-12 (in Japanese).

Oikawa, A. 1997. Archaeological Database -Multimedia
Technology for Re-emergence of the Past-, Information
Processing, 38(5), pp. 388-391 (in Japanese).

Yokoyama, R., Chiba, F., 2002. Construction of an
Archaeological Site Database Using Geographical Information
System, The Journal of the Institute of Electronics, Information,
and Communication Engineers , 85(3), pp.176-180 (in
Japanese).

References from Books:
Date, C. J., 2003. An Introduction to Database Systems (8th
Edition). Addison Wesley.

References from websites:
Fukui Prefectural Tourism Federation 2009. “Ichijodani
Asakura Clan Ruins”, http://www.fuku-e.com/lang/english/
culture_s.html (accessed 27 July, 2009)

PHP Group 2009. “PHP: PDO – Manual 2009”,
http://jp.php.net/manual/en/book.pdo.php (accessed 17 July,
2009)

Acknowledgements

We would like to give great thanks to Mr. Nobuyuki Mizumura.
He is an archaeological researcher of the Ichijodani Asakura
Clan Ruins. He gave us a lot of assistance, help, and
cooperation.

APPENDIX A. PHP DATA OBJECT (PDO)

We could access the databases managed by a variety of
database management systems in the uniform way by using
PHP Data Object (PDO) (PHP Group, 2009).
An instance object of the class PDO is created in order to
prepare the access to a database. The following is an example of
the creation of a PDO instance object for accessing a database,
whose name is “relics_db,” managed by the database
management system MySQL, which is on the “localhost”
computer.

$link = new PDO('mysql:host=localhost;dbname=relics_db',
DB_USER, DB_PASSWORD) ;

The example described above is for the case of using the
database management system MySQL. When the character
string “mysql” is changed to “pgsql,” the database management
system PostgreSQL can be used.
The instance object created, which is stored into the variable
named “link” in our example, is used for accessing the database.
An example of obtaining all of the tuples in a table named “T”
is as follows:

$result = $link->query(“SELECT * FROM T ;”);
The query method of the object is used in obtaining tuples in
the table. The character string “SELECT * FROM T ;” is an
SQL statement. SQL is a standard database language. Please
note that the same operation could be used in obtaining tuples
from the table managed by the different database management
system by using PDO.

APPENDIX B. VIEW

A view is a virtual table derived from one or more ordinary
and/or virtual tables (Date, 2003). A view can be used only by
defining the view with a kind of query. Storing data into a view
is not required at all. By using views, the data could be handled
as if they had different structure.
Let a table T have five columns: C1, C2, C3, C4, and C5. Let
consider the situation that the columns C1, C2, and C5 are
handled as X1, X2, and X3, respectively, in a view V1, and the
value of column X1 of each tuple in V1 is larger than 10. This
view V1 is defined in SQL as follows:

CREATE VIEW V1(X1, X2, X3)
 AS SELECT C1, C2, C5 FROM T WHERE C1 > 10 ;
The set of tuples retrieved by executing the SELECT statement
in the view definition is that of tuples in a view table.
The example described above is for one table. For two or more
tables, a view can similarly be defined. Let a table S have three
columns: D1, D2, and D3. Let consider another situation that
the columns C1 and C2 of the table T are handled as Y1 and Y2,
respectively, and the column D2 of the table S is handled as Y3,
and the value of the column C1 of the table T is equal to that of
column D1 of the table S and is larger than 10 in a view V2.
This view V2 is defined as follows:

CREATE VIEW V2(Y1, Y2, Y3)
AS SELECT T.C1, T.C2, S.D2 FROM T, S

WHERE T.C1 = S.D1 AND T.C1 > 10 ;

	1. INTRODUCTION
	2. ARCHAEOLOGICAL DATABASE SYSTEM
	3. METHOD OF USING USER’S DATA
	3.1 Approaches
	3.2 Defining views
	3.3 Implementation

	4. PROTOTYPE SYSTEM
	5. CONCLUDING REMARK
	References
	Acknowledgements

	APPENDIX A. PHP DATA OBJECT (PDO)
	APPENDIX B. VIEW

