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Abstract: 

The main task of this paper is to describe methods and algorithms used in computer vision for fully 

automatic reconstruction of exterior orientation in ordered and unordered sets of images captured by digital 

calibrated cameras without prior informations about camera positions or scene structure. Attention will be 

paid to the SIFT interest operator  for finding key points clearly describing the image areas with respect to 

scale and rotation, so that these areas could be compared to the regions in other images. There will also be 

discussed methods of matching key points, calculation of the relative  orientation and strategy of linking sub-

models to estimate the parameters entering complex bundle adjustment. The paper also compares the results 

achieved with above system with the results obtained by standard photogrammetric methods in processing of 

project documentation for reconstruction of the Žinkovy castle. 

 

1. INTRODUCTION 

Images captured by digital cameras are one of the most important form of information in documentation of 

cultural heritage. Effective assignment of camera pose in space is necessary for consequential usage for 

measuring purposes. The automatic process of finding exterior orientation can be divided to three main tasks: 

Key point finding and matching, relative orientation and bundle adjustment. Our paper presents practical 

experiment of such procedure. 

2. KEY POINTS EXTRACTION 

2.1 SIFT – scale invariant feature transform 

The initial phase during comparing and relative orientation of two images is to choose characteristic or key 

points in images. The key point should by no mean characterize the image area so that this area could be 

reliably found and compared with the same area in different image. By finding corresponding points in both 

images a correspondent couple (correspondence) is defined. For detection and comparison of significant 

points in the image SIFT operator was chosen as the most convenient detector. This detector is unlike simple 

correlation between two areas in the images with the size of for example 21x 21 pixels partly invariant 

toward view geometry change therefore rotation (circa 15 degrees), scale change and is partly invariant to 

noise as well. SIFT detector is based on searching for extremities in the images by finding differences among 

images incurred by the convolution of image function ),( yxI and Gauss filter  ),,( yxG with variable 

values of sigma. 
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Exact procedure is described for example in [2]. 

 

 



 

Figure 1: Blurred images and their differences 

2.2 Finding extremities 

Single images with a different degree of blurring are subtracted each other and difference imagess would 

come into being. These differences are evidently approximation of the second derivation of the image 

function ),( yxI and serve to detect local extremities. After creation of differential images (Fig. 1) each pixel 

value is compared with six neighbouring pixels in the image and nine neighbouring pixels in the image with 

blurring partly a level higher and partly a level lower. If the value of the tested pixel is the lowest or 

eventually the highest out of all the neighbouring pixels, this pixel is chosen as possible key point. Once the 

candidate for the key point is found by comparison with its neighbours it is necessary to decide about its 

stability and therefore about possible denial on the bases of information about its location, scale and a rate of 

main curvatures. This information enables effective removal of nondesired points in low contrast areas. For 

each point is its surrounding in the range of 3x3 pixels approximated by the three dimensional quadratic 

function. Consequently is found maximum or eventually minimum of this function that defines the exact 

location of the key point with subpixel accuracy. The points along the edges are according to curvature 

diameters rate in two perpendicular directions removed as well. 

2.3 Orientation assignment 

A certain orientation can be assigned to each key point. By this step is ensured key point descriptor 

invariance toward the image rotation. Descriptor is expressed relatively in the view of key point rotation. 

Orientation is computed in dependence of smoothing out rate for given key point and does not depend on 

scale. In blurred image size values ),( yxm  and orientation values ),( yx  of the function gradient 

),( yxL are computed. 

Consequently orientations in the surrounding of the key point are computed, when an orientation histogram 

of neighbouring pixels that contains 36 items for 360 degrees range with 10 degrees interval is put together. 

In this histogram a peak is found (an item with biggest occurrence) and this dominant rotation is assigned to 

the key point. Farther it is tested whether other occurrences reaching 80 percent of the biggest occurrence are 

present. If so a new key point is made out with the same coordinate but with a new orientation given by this 

direction. After all in some places a rank of key points can ensue with the same coordinate but with various 

orientations.   

2.4 Key point deskriptor 

The parameters defining the location, scale and orientation of the key points also define auxiliary coordinate 

system, to which descriptor can be expressed clearly describing the area around key point location. 

Descriptor is based on image gradients and their orientation in a region surrounding key point, where area 16 

x 16 pixels is divided into 16 blocks of 4 x 4 pixels. For every block is created histogram of eight meaningful 

orientations weighted by gradient magnitude using Gaussian function. Subsequently by ordering and 

normalizing those 16 partial histograms containing 8 intervals descriptor, vector of dimension 128 is formed. 



 

 

Figure 2: Key points and their orientations 

 

For key points detection an implementation [1] was used, for another acceleration of computing an 

implementation with usage of hardware acceleration on CUDA [4] platform would be tested. 

3 FINDING CORRESPONDENCES 

If there are detected key points in each image counting descriptors, we can approach to pairing and finding of 

corresponding point couples - correspondences, which came into being by projection of point in three 

dimensional space to both images. The rate of agreement of the two key points is determined on the basis of 

their SIFT descriptor vector’s Euclidean distance in two ways. Because we do not have any information 

about image sequence it is necessary to compare them by each to each method. 

3.1 Symmetric pairing 

To every key point in the first image we can find a point with the nearest descriptor distance in the second 

image. In the second image is to each key point found the nearest key point in the first image as well. As 

potential pair of corresponding points is labeled the one where mutual agreement is in both comparisons. 

3.2 Test poměru vzdáleností 

Lowe [2] recommends testifying the agreement of the key points by rate of descriptor Euclidean distance to 

the first and second nearest point. As limiting he offers distance ratio of 0.6. It is obvious that this criterion 

can fulfill more key points. For correspondence’s stability and reliability reasons it is convenient not to count 

on these multiple correspondences in farther calculations. This test proofed as not much convenient with 

markedly repeating texture (for example the facade of panel house images). 

4 FUNDAMENTAL AND ESSENTIAL MATRIX 

The correspondences set obtained by above mentioned procedures is however loaded with errors and false 

correspondences, which arouse from a change of camera location, change of lighting, digital image noise and 

so on. These false correspondences could be eliminated by usage of geometric criterion – epipolar condition. 

 



 

Figure 3: Illustration of epipolar geometry 

The X point together with projection centers C and C’ forms epipolar plane in 3D space. By epipolar plane 

intesection with projection planes are formed epipolar lines – epipolars. And points x and x’, which are 

projections of X point into projection plane, lies on this epipolar lines. This lines also pass thru epipoles e 

and e’ where epipole is projection of first camera projection center to the projection plane of the second 

camera. Algebraic formulation of the epipolar condition is equation (2): 
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Where F is fundamental matrix size is 3 x 3 and rank of this matrix is 2. This fundamental matrix defines 

relation between two cameras without dependency on scene structure. For calculation it is not necessary to 

know cameras interior orientation parameters.  

4.1 Fundamental matrix computation using correspondences 

Matrix F has seven degrees of freedom so minimal number of correspondences is seven. Number of solutions 

can vary from one to three. Due to the numeric stability is more optimal to use eight-point algorithm and find 

the best solution using SVD decomposition.  Formula (2) defines relation between two corresponding points. 

Providing F: 
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We can obtain one linear equation for each correspondence: 

0'''''' 333231232221131211  ffyfxfyfyyfxyfxfyxfxx  (4) 

For n correspondences we obtain homogeneous system of linear equations in following form: 
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Solution which minimizes distances of projected points to epipolar lines is such a vector f where Ax  is 

minimal and 1f . 

If 
TUDV is SVD decomposition of matrix A, the solution is vector corresponding to the smallest A matrix 

singular value which is the last column of V matrix. To meet real fundamentality, the F matrix should have 

rank of 2. Due to noise and small inaccuracies, computed matrix has usually rank of 3. For conversion to 



rank of 2 SVD decomposition is used again, where last eigenvalue is set to zero and matrixes formed by 

decomposition are multiplied. 
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Out of numeric stability reason it is good to reduce input pixel coordinates towards the center of gravity and 

normalize. For successful result it is necessary that 3D points which projections are used for computation of 

the fundamental matrix must not lie in one plane. Described eight point algorithm is linear, nonlinear 

solution can be found for example in [5]. 

4.2 RANSAC – RAndom SAample Consensus 

For key points selection meeting epipolar condition the RANSAC algorithm was used. This algorithm 

enables to find the best solution suiting given model iteratively. In our case x’ F x = 0. Comparing to results 

obtained by using least mean squares (LMS) method which doesn’t take into account blunders and mistakes, 

results obtained using RANSAC are more consistent. Model (fundamental matrix) is computed in every 

iteration from randomly selected sample formed by 8 pairs of corresponding key points. Consequently the 

rest of this points not contained in selected sample is tested against computed model. If pre-specified 

percentage of key points meets the model parameters and total model error is at the same time smaller than 

error obtained in previous iteration, given selection is marked as the best obtained selection. In other case is 

computed model rejected. The computation can be terminated after a specified number of iterations or after 

reaching the minimal threshold value of error from the statistically significant part of the correspondences. 

The last step is to determine the fundamental matrix using the SVD method from the best selection (5, 6). 

5 ESSENTIAL MATRIX AND RELATIVE ORIENTATION 

Provided the fundamental matrix F is computed and calibration matrixes of both cameras are known it is 

possible to formulate equation for essential matrix computation which defines relative position of cameras 

regardless of scale. 
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If only relative orientation is solved it is possible to set up first camera projection center into coordinate 

system origin and its rotation matrix as identity matrix. Projection matrix of the first camera can be 

formulated:  0|IP   And for the second camera:  tRP |'  where R is rotation matrix and t is translation 

vector regardless the scale. 

RtE  ][  

Rotation and translation we can determine by SVD decomposition of the essential matrix E in following 

way: 
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TVdiagUSRU )0,1,1(  where 
TUZUS   

TUWVR  or 
TTVUWR   

Mentioned decomposition has four possible solutions. Valid solution is selected by projection depth testing, 

where projection depth is computed for any point and checked whether it is positive for both cameras. 

Relative orientation is computed for any image pair combination containing specified minimal number of 

correspondences. As sufficient number regarding noise appears to be 16 correspondences. In the case of 



unordered collection of images where no prior parameters are known, the images are compared each to each 

and the total number of comparisons is )( 2nO , where n means number of images. In our practical 

experiment we selected 25 images and 300 possible combinations were tested. For larger images sets is 

convenient to use parallel computations. In case of image sequence is suitable due to computation 

complexity limit the number of compared images to 3 – 5. 

6 SPARSE BUNDLE ADJUSTMENT 

Based on the computed relative orientations between single images we can build an approximate scene 

model in relative coordinates that serve as an estimate of input parameters entering into complex bundle 

adjustment. As initializing pair is selected a pair of images with the largest number of correspondences 

(inliers). The objective of the bundle adjustment is the reprojection error minimalization, when the 

corrections are assigned both to three dimensional points and parameters of outer or possibly inner 

orientation of single cameras. 
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Where 
2)),(( ijij xXPd  marks the square of Euclidean distance between the predicted projection jP  of the 

point iX  in three dimensional global coordinate system and real projection ijx to image j . 

The base of SBA algorithm (Sparse Bundle Adjustment) is implementation of nonlinear Levenberg-Marquart   

algorithm where local function minimum is sought for point X projection in global coordinates into the 

image coordinates using a combination of Gauss-Newton method and the method of the steepest descent. If 

the input estimate of parameters is too far from the f function local minimum, the algorithm behavior is 

similar to the steepest descent method which guarantees at least slow convergence. In the case of moving 

towards local minimum Gauss-Newton method is used to guarantee fast convergence. 

The main advantage of the SBA software package [7] is the usage of optimized memory structures for sparse 

matrices storing arising from the normal form equations. Without the use of sparse matrices the solution 

would be (when having hundreds of thousands unknown images) out of extreme memory and computation 

cost almost impossible. 

7 EXPERIMENTAL RESULTS 

The input selection contained 25 images of Žinkovy castle facade (Fig. 5) shot by digital camera Olympus, 

the computations were performed on a standard PC with Intel Core 2 Duo processor. Algorithms were 

implemented in C/C++ language. Based on the results of the lens calibration the distorsions were neglected.  

The original images of size 3648 x 2736 pixels were modified due memory cost of key points computation to 

1204 x 903 size. 



 

Figure 4: Input dataset: 25images, size 1204x903 pixels 

 

Computation SIFT descriptors took 424 seconds, average 17 seconds per image and 485536 were detected. 

Key points pairing for 300 image combinations took 900 seconds. Finally 43052 three-dimensional points 

entered bundle adjustment. 

 

 

Figure 5: Reconstructed projection centers 

The results of the bundle adjustment were the absolute orientations of images in a relative coordinate system, 

which was defined by the first pair of images. The coordinates of projection centers were also independently 

determined in Intergraph ISAT software using ground control points in geodetic system. To compare the 



accuracy of automatic orientation, transformation key and coordinate differences between projection centers 

in both systems were also computed. 

Table 1: Differences between coordinates of projection centers computed in Intergraph ISAT and 

coordinates obtained by automatic process 

Image dX [m] dY [m] dZ [m] 

P6027864 0.28 0.13 -0.09 

P6027865 0.19 -0.01 0.03 

P6027866 0.17 -0.01 0.08 

P6027867 -0.24 -0.05 0.09 

P6027869 0.59 0.09 -0.09 

P6027870 0.56 -0.07 0.02 

P6027871 1.23 0.00 0.44 

P6027872 0.92 0.03 -0.01 

P6027873 -0.62 -0.09 -0.26 

P6027874 -0.57 -0.25 0.01 

P6027875 -0.55 0.08 0.14 

P6027876 -0.95 0.01 -0.15 

P6027877 -0.41 0.02 -0.15 

P6027878 -0.49 0.25 0.22 

P6027879 -0.36 0.18 0.48 

P6027880 -0.35 -0.30 -1.02 

P6027881 -0.14 -0.03 -0.03 

P6027882 -0.25 -0.08 0.17 

P6027883 -0.41 0.04 0.30 

P6027884 -0.45 -0.02 -0.53 

P6027885 0.19 0.05 0.04 

P6027886 0.24 0.05 0.30 

P6027887 0.42 0.11 0.55 

P6027888 0.41 0.01 -0.51 

P6027889 0.57 -0.12 -0.04 

8 Summary 

By above mentioned methods the absolute orientations of projection centers in a relative coordinate system 

using image descriptors were fully automatically determined. Parameters obtained in this way can be easily 

transformed into geodetic system using ground control points and ideally these parameters can directly serve 

as input to other tasks such as generating of orthogonalized mosaic of facade images. In less ideal case we 

can obtain the input estimates of parameters for another advanced calculations and decrease time and work 

difficulty of the absolute orientation procedure. 

Inaccuracies can be attributed to both numerical instability of algorithms and the insufficient calibration of 

the lens. 

Other options for achieving better results: 

1. Using of GPU for reducing time complexity 

2. Selection of key points only in a particular part of images (Gruber areas). 
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