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ABSTRACT:

At the Bayon temple in Cambodia constructed by sandstone, a study on biodeterioration is one of key tasks of conservation measures
for it. Especially, the progress of the deterioration seen in the bas-relief of the inner gallery which was carved the myth world of
Hinduism by outstanding description is remarkable. The purpose of this study is to investigate the kind, distribution, and reproductive
cycle of biological colonization to discern the relationship with the environment attribute to deterioration and find an effective method to
remove them. We assume that some of the microorganisms can be discriminated by detecting the absorbance spectra of photosynthetic
pigments in them. We developed a new multispectral imaging system to analyze the spectral information of different microorganisms
on the wall’s surface. Our system has a wide field of view, low noise, negligible distortion and high resolution enable us to measure the
bas-relief in situ. We also developed a segmentation method in order to the spectral image allow to discriminate kind and distribution
of microorganisms. Our classification results show the difference in each microorganism’s distribution between rainy and dry seasons.

1 INTRODUCTION

Spectral reflectance is inherent in the nature of objects. Differ-
ent materials have different spectral reflectance. Object analysis
based on this fact has been conducted in many fields, such as
medical imaging, agriculture, remote sensing, and archaeology,
to name a few.

Our Digital Bayon Project (Ikeuchi and Miyazaki, 2007), which
have digitized the shape and surface reflectance of the Bayon
Temple in the Angkor ruin for preservation and deterioration pre-
vention, needs to determine what kind of microorganisms are
present and how widely they exist over the structural surfaces.
This involves the analysis of spectral reflection distribution of mi-
croorganisms living on the bas-relief of the Bayon Temple.

The microorganisms are one cause of deterioration in the inner
gallery of Bayon Temple. Due to deterioration, the detailed bas-
reliefs on the walls are losing their shapes. We examine the kind,
distribution, and reproductive cycle of the microorganisms to find
an effective method to remove them. We assume that some of
them can be discriminated by detecting the absorbance spectra of
photosynthetic pigments in them, and we find we can calculate
absorbance from reflectance.

For the efficient analysis of spectral distribution over an object
surface, a two-dimensional spectral image acquisition system is
desirable. Traditional spectral cameras provide spectral data only
from a limited area, often from a spot. It is difficult, if not im-
possible, to cover the entire surface of the bas-relief, whose size
is 800m x 4m, located in the inner corridor of the temple. This is
one of the motivations for us to develop an efficient, handy, and
yet high-resolution spectral imaging system. The requirements of
the system are: 1) to cover a wide area for efficient measurement
to be able to determine distribution of microorganisms, 2) to be
able to ignore variations of illumination conditions in dramatic
weather changes from bright sunshine to dark squall, and 3) to
design a handy system that can be transported to a deep jungle.

We developed a new multispectral imaging system using a Liquid
Crystal Tunable Filter (LCTF) (Tominaga and Okajima, 2000),
mounted on an automatic pan/tilt platform. Compared to conven-
tional systems, our system has not only high image quality with
sufficient spectral resolution but also a wide capturing angle for
efficient sampling.

Preservation of cultural assets involves challenges to spectrum
measurement. Cultural assets are often in severe outdoor envi-
ronments, such as the environments of the pyramids in Egyptian
desert or the Angkor ruin in Cambodian jungle. In an outdoor
environment, wide alterations in the illumination environment of-
ten occur quickly. Fixed exposure of a system causes saturation
and underexposure. To tackle these problems, we developed a
measuring method that can estimate optimum exposures based
on noise analysis of the system.

Preservation of cultural assets also needs to determine not only
the kinds of microorganisms that exist but also how widely they
are spread and how much they mix with each other. This requires
us to segment the multispectral images into spatial segments cor-
responding to the distribution of these microorganisms.

We propose an effective dimension reduction method by using
Normalized Cuts (NCuts) (Shi and Malik, 2000), a class of non-
linear dimensional reducers. NCuts methods are widely used as
segmentation methods for RGB images in computer vision, but
they are not used for multispectral image segmentation in gen-
eral. NCuts methods are convenient in reducing dimension in a
nonlinear manner, and simultaneously segmenting the data. One
difficulty in applying NCuts method to our problem is the neces-
sity of a huge memory space (N × N) for creating an affinity
matrix. We solve this issue by applying a local linear approxima-
tion (Bishop, 2008), by assuming local linearity on the tangential
space of a global manifold space in the high dimension.

The specific contributions of our work are to propose a multispec-
tral image acquisition technique for obtaining panoramic mul-
tispectral images, to develop a segmentation method to handle



global nonlinear dimensional reduction, and to apply our method
to the microorganisim analysis of bas-relief of Bayon temple ac-
tually.

The structure of this paper is as follows. Section 2 describes our
hardware design for panoramic multispectral imaging and cap-
turing techniques of data acquisition for cultural assets. Section 3
derives a nonlinear dimension reduction method using the ”kernel
trick” and NCuts method, and applies the NCuts segmentation to
a multispectral image. In Section 4, we evaluate our methods. In
Section 5, we demonstrate the application for analyzing micro-
organisms on the bas-reliefs of the Bayon temple. Finally, we
conclude the paper in Section 6.

Figure 1: Bayon temple in Cambodia

2 ACQUISITION OF A MULTISPECTRAL IMAGE

We developed a novel multispectral imaging system that has a
wide view angle, high image quality, and an accurate spectrum.
The system can efficiently measure a target object in an outdoor
environment. In subsection 2.1, we describe the hardware con-
struction of our system. In subsection 2.2, we describe the tech-
nique for capturing images in an outdoor environment. In sub-
section 2.3, we describe reconstruction of each band of images
having different configurations, and how to stitch a multispectral
image.

2.1 Panoramic Multispectral Camera

Our multispectral imaging system has been designed to be a handy
system with spectrum accuracy in each pixel with a wide view
angle. The system consists of a small monochromatic CCD cam-
era with a liquid crystal tunable filter (LCTF), shown in Fig. 2,
mounted on an automatic pan/tilt platform (CLAUS Inc. Rodeon
VR head). The LCTF (CRI Inc. Varispec, Bandwidth 7nm) is an
optical filter that allows the wavelength of the transmitted light
to be electronically adjusted. The monochromatic CCD camera
(Sony XCD-X710) with the LCTF mounted can obtain a series
of two-dimensional spectral images by repeatedly changing the
LCTF’s transmittable wavelength with image acquisitions. The
captured image has high image quality without distortion. The
LCTF capturing system has a narrow field of view because the
LCTF is mounted in front of the lens. We compensate for this
problem by using an automatic panorama pan/tilt platform. The
system captures a wide view multispectral image by synchroniz-
ing these three devices efficiently.

2.2 Estimation of Adaptive Exposure in an Outdoor Envi-
ronment

The optimal exposure time is necessary to be determined in each
wavelength due to the two reasons: uneven characteristics and

Figure 2: Panoramic multispectral imaging system

varying illumination conditions. A multispectral imaging sys-
tem using LCTF generally needs a fixed exposure time over the
entire range of wavelengths for comparing pixel intensities over
all wavelengths. However, the spectral sensitivity given by the
combination of LCTF and monochromatic camera is very low in
short wavelengths (e.g., 400-500 nm), as shown in Fig. 3.(a), and
relatively high in other wavelengths. If the pixel intensity at a
certain wavelength would be smaller than the dark current noise,
we would not be able obtain a meaningful measurement at that
wavelength. For instance, Fig. 3.(b) shows a measured spectrum
under dark illumination. Longer exposure time is necessary for
spectral accuracy with wavelengths from 400 nm to 500 nm than
for other wavelengths.

Varying illumination conditions occur in an outdoor environment,
in which many cultural assets are located. Our sensor samples
spectral data by changing the LCTF’s filtering characteristics and
samples a series of images along the wavelengths. During this
sampling period, it often occurs that the illumination condition
varies due to the movement of clouds. If the intensity of illumi-
nation dramatically varies during measurement, it would induce
saturation or underexposure at certain wavelengths. The dynamic
determination of optimal exposure time at each wavelength is
necessary for adjusting the effects of varying illumination con-
ditions.

Figure 3: (a) Spectral sensitivity function of monochromatic
CCD camera and LCTF transmittance function (b) Illumination
spectrum when the exposure time in all bands is fixed.

We attempt to estimate an optimal exposure time for each wave-
length based on noise analysis (Reibel et al., 2003). The noise
can be categorized into signal-dependent noise (SDN) and signal-
independent noise (SIN). In this system, we mainly consider the



effect due to the SIN, since the SDN is negligible compared with
SIN. The SIN is composed of fixed pattern noise (FPN) and read-
out noise, and photo response non-uniformity (PRNU). FPN is
a dark current noise, a dynamic component. The read-out noise
is composed of the reset noise, amplifier noise, and quantization
noise. We focus on the FPN and the read-out noise, since PRNU
is a static component easily calibrated in the initial stage.

The FPN depends on the temperature and the exposure time. Here,
we assume that the sampling time is reasonably short, say 5 to
10 min, so that the temperature can be considered as constant.
The FPN has a linear relation with the exposure time as shown
in Fig. 4. a. The linear relation can be expressed as follows:
εDC = at+b, where t is an exposure time, a is the amount of the
FPN increase depending on exposure times, and b is the amount
of the FPN with zero exposure time at that particular tempera-
ture. These values are measured at the site before sampling from
a series of images with various exposure times while the lens is
covered with a cup.

The read-out noise appears randomly at pixel positions at each
image. We model the read-out noise as a Gaussian distribution at
each pixel. In order to evaluate the parameters of the Gaussian
distribution, we obtain a series of lens-covered images, and we
calculate mean and standard deviation values. The mean value
of images εDC are the FPN, and the standard deviation value of
images εR are read-out noise. We use the upper bound of the SIN
as εDC + εR.

Figure 4: (a) The correlation between the FPN and exposure time.
(b) Captured image of panoramic multispectral imaging system.

Based on the discussion of the noise analysis, we design the pro-
cedure to determine the optimal exposure time at each wave-
length. The procedure consists of two parts. The first part finds
the exposure time that gives the brightest image of a white ref-
erence while avoiding saturation over all wavelengths. The sec-
ond part determines any wavelength that gives lower value in the
white reference than the SIN upper boundary, and, if this wave-
length exists, it increases the exposure time while avoiding satu-
ration.

The first part consists of:

Step 1. Select the brightest area (m × n) on a white reference
at each wavelength, λ, as shown in Fig. 4. b, and obtain the
average brightness within the window, L(λ). Repeat this
step over all wavelengths

Step 2. Obtain the maximum value, Lmax, among all the bright-
ness values over all wavelengths.

Step 3. Determine the standard exposure time ts as the longest
exposure time when all the values in the brightest area found
in Step 1 are not saturated. Namely, Lmax < 216.

The second part rescues the particular wavelength image buried
under the noise level. For this, we measure the FPN εDC and

read-out noise εR by putting the cap in front of lens. Here, the
average value is the FPN, and the standard deviation is considered
as the boundary of the read-out noise.

In each wavelength, the optimal exposure time t(λ) is adaptively
estimated. The optimal exposure time t(λ) can be represented as:

t(λ) =
ts

εDC+εR+µ
L(λ)

(if L(λ) < εDC + εR + µ)

ts (otherwise)
(1)

where µ is an off-set value to bring the adjustment to the safer
side.

2.3 Construction of Panoramic Multispectral Image

After capturing images, we can synthesize the obtained images
L(i, j, λ) to the spectral power distribution image L′(i, j, λ):

L′(i, j, λ) = ts
(L(i, j, λ) − εDC(i, j, λ))

t(λ)
(2)

Here, the FPN image εDC(i, j, λ) in arbitrary exposure time can
be estimated by using following equation, according to the linear
correlation between the FPN and exposure time, as shown in Fig.
4. a:

εDC(i, j, λ) = α(λ)εs
DC(i, j, λ) (3)

where εs
DC(i, j, λ) is measured as the FPN image first. This can

be obtained to calculate the mean image of captured images when
light is intercepted from the camera. The linear correlation be-
tween the FPN and exposure time is as follows:

α(λ) =
at(λ) + b

ats(λ) + b
(4)

where a and b are, respectively, slope and intercept.

We calculate a spectral power distribution image L(i, j, λ), which
is divided into the channel values L′(i, j, λ) in each pixel i, j by
camera sensitivity function C(λ), and LCTF transmittance func-
tion T (λ). Fig. 3 shows the actual sensitivity functions of each.

L(i, j, λ) =
L′(i, j, λ)

C(λ)T (λ)
(5)

Next, we stitch the multispectral images of different view angles.
Stitching usually extracts image features from a pair of images,
establishes correspondences among such extracted features, and
calculates the translation and rotation parameters to superimpose
overlapping areas for connecting these two images. Here, the
features in multispectral images are different in each band image.
To overcome this issue, we generate an intensity image using all
the spectral images in each viewing direction. Second, we ex-
tract Scale-Invariant Feature Transform (SIFT) features (interest
points) (Lowe, 2004) from these intensity images and establish
correspondences for obtaining the translation and rotation param-
eters. Finally, we stitch the spectral image of each view angle
using these parameters. Fig. 5 shows a synthesized panoramic
multispectral image.



Figure 5: Constructed panoramic multispectral image by pro-
posed system: this image has 81-dimensional spectrum in each
pixel.

3 MULTISPECTRAL IMAGE SEGMENTATION

Segmentation of a multispectral image needs dimensional reduc-
tion. For dimensional reduction, linear and nonlinear reduction
methods exist. Our prime objects, microorganisms on the bas-
relief of the Bayon temple, have a nonlinear characteristic in
spectral distributions due to the combination of top and bottom
layers. This nonlinear problem can be solved either by employing
the ”kernel trick” such as Kernel PCA (Schölkopf et al., 1998)
or extending the Ncut method.

3.1 Nonlinear Mixing

Some of the top layer’s pixel spectra typically show mixed spec-
tral characteristics between the top layers and bottom layer. In
a remote sensing field, these cause a so-called spectral mixing
(Keshava and F.Mustard, 2002). The spectral mixing can be cat-
egorized into two models: linear mixing and nonlinear mixing.
The linear mixing occurs when one pixel consists of sub-parts
from different materials; the different materials are distributed on
the image plane. Generally, the linear mixing can be solved by re-
ducing spectral dimension by using PCA, and clustering reduced
data.

Our application, analysis of microorganisms, falls in the category
of nonlinear mixing. This mixing occurs due to layer surfaces
such as microorganisms and bottom rock surfaces. The different
half-transparent materials are distributed along the line of sight.
The PCA method cannot be applied to nonlinear mixing, but mix-
ing can be achieved either by employing the kernel PCA (KPCA)
(Schölkopf et al., 1998) or extending the NCuts method.

3.2 Normalized Cuts

The NCuts method consists of nonlinear dimension reduction and
clustering. Among various segmentation methods, the Ncut meth-
od has a unique feature of nonlinear dimensional reduction.

For this, let I = {I1, I2, I3, ., Ii, .., IN}, where I is input data, of
m dimension, at the node i. Then, the NCuts method calculates
the weight matrix W , representing similarity among nodes, from

the following formula:

Wij = exp

„−‖Ii − Ij‖2

σ2
I

«
∗(

exp
“−‖Xi−Xj‖2

2
σ2

X

”
(if‖Xi − Xj‖2 < r)

0 (otherwise)
(6)

where Ii, Ij are input values of m dimensions at the node, i and
j, σ2

I is the variance of input data, and r is the threshold of the
proximity between two nodes in the image. NCuts solves the
generalized eigensystem equation:

(D − W )y = λDy (7)

Next, the Laplacian matrix, L = (D − W ) can be calculated
from the weight matrix, W . The normalized Laplacian matrix L̃
is given by:

L̃ = D− 1
2 LD− 1

2 = I − D− 1
2 WD− 1

2 (8)

where D is N×N diagonal matrix Dj = diag(W (1, j), W (2, j)
. . .), j = 1, 2, · · · , N , and W is N × N a symmetric matrix
W (i, j) = W (j, i). We can transform Eq. 8 into the standard
eigensystem as follows:

D−1/2WD−1/2z = (1 − λ)z (9)

We can span a low dimensional space, of E dimensions, with
the eigenvectors from the E + 1 least significant eigenvalues,
where E is the partition number, and we ignore the least signif-
icant eigenvalue and the corresponding eigenvector. In the least
significant space, all the input data have roughly same values due
to the data normalization. We map the input data onto this low
dimensional space.

yEij =
zi+1,jp

Djj

, (i = 1, ..., E + 1, j, ..., N) (10)

Finally, we can segment yEij into E clusters using the k-means
method.

3.3 Applying NCuts to multispectral segmentation

Dimensionality is one of the issues in applying the NCuts method
to the multispectral image segmentation method. The NCuts meth-
od requires making a weight matrix of a high-resolution image,
of which the dimensions are (N × N), where N is the number
of image pixels, typically more than 250,000. The NCut method
handles this issue by effectively using the proximity threshold,
ignoring remote nodes for calculation, and ending up solving a
sparse matrix of a high-dimensional image.

We employ a two-step method to overcome this high-dimensional
issue. In our microorganism analysis, we cannot apply the prox-
imity threshold because two remotely located regions from the
same kind of microorganism should be classified into the same
class. We assume that a nonlinear manifold of high dimension
has a linear sub-space in a low dimension such as local linear
embedding (Roweis and Saul, 2000), or ISOMAP (Tenenbaum et
al., 2000). First, we over-segment the multispectral image using a
standard PCA method and k-nearest neighbor method, and form
super-pixels corresponding to each segment. Then, we apply the
NCuts method to these super-pixels.



Our implementation is as follows: First, we compute M super-
pixels by over-segmentation using PCA dimension reduction and
k-nearest neighbor method. Second, we calculate M mean spec-
tra for all M super-pixels. Let I = {I1, I2, I3, ., Ii, .., IM},
where I is spectrum data of m dimensional. Third, we compute
the weight matrix W from M (M < N) super-pixel values using
the following equation:

Wij = exp

„−‖I(i) − I(j)‖2

t2

«
(11)

In our experiment, we set t, a normalization factor, at 70% of the
maximum distance in the weight graph. Finally, we can segment
a multispectral image into material regions by using this weight
matrix and NCuts.

4 EXPEIRMENTAL RESULTS

In this section, we describe two experiments. We conducted accu-
racy verification of Obtained multispectral image. We compared
proposed segmentation method with a conventional method.

4.1 Accuracy Verification of Multispectral Image

In this subsection, we evaluate image noise and spectral accuracy
of a multispectral image given by our system.

Image Noise Fig. 6. a and b show, respectively, the captured
image in fixed exposure, and the captured image by the proposed
dynamic exposure method. The captured image from the fixed
exposure method provides much noisier data. This effect is more
apparent in the short wavelength area. On the other hand, the
captured image given by our method is less noisy.

Figure 6: Image quality of obtained image (a) Captured multi-
spectral image in fixed exposure time. (b) Proposed method.

Spectral Accuracy Table.1 shows the spectral accuracy of our
system. In this experiment, we captured multispectral images of a
color chart (X-lite Color checker), under artificial sunlight (Seric
XC-100), by using both fixed exposure and the proposed dynamic
exposure methods, respectively. Then, we measured the spectrum
of each patch using a spectrometer (PhotoResearch PR-655) as
the ground truth. Second, we calculated the root mean square
error (RMSE) between the obtained spectral data and the ground
truth in each patch. Compared with the RMSE values by the fixed
exposure method, the RMSE values by the proposed method are
much lower. The result also showed that our system is effective
for spectral analysis.

RMSE
Color Fix AE Color Fix AE
DarkSkin 4.469 1.301 YellowGreen 0.914 0.764
LightSkin 1.347 1.064 OrangeYellow 0.915 0.870
BlueSky 1.254 0.909 Blue 0.627 0.398
Foliage 3.060 0.850 Green 1.204 0.657
BluishFlower 1.196 0.885 Red 0.953 0.887
BluishGreen 0.916 0.516 Yellow 1.102 0.914
Orange 1.460 0.987 Magenta 1.002 0.885
PurplishBlue 1.420 1.074 Cyan 0.619 0.449
ModerateRed 0.937 0.892 White 1.174 0.892
Purple 1.109 1.029 Mean 1.352 0.854

Table 1: Spectral accuracy

4.2 Compared with Conventional Segmentation Methods

We compared conventional segmentation methods with the pro-
posed method. Figs. 7 show the segmentation results of layered
surfaces for examining the effect on the nonlinear mixture. The
input image is four watercolor pigments painted on a white pa-
per. First, we calculated reflectance spectra from the input mul-
tispectral image by using our method. Second, we segmented
the reflectance spectra image into different materials using three
methods.

Figure 7: Segmentation results of layered surfaces (a) Input im-
age (b) Method 1: PCA + k-means (c) Method 2: KPCA + k-
means (d) Method 3: Proposed method

This image has complex color between the top layers and the
bottom layer. Fig.7. b, by Method 1, and c, by Method 2, include
significant segmentation error.

5 MULTISPECTRAL IMAGE ANALYSIS FOR
BAS-RELIEF

This section describes how we applied our proposed multispec-
tral imaging system and segmentation method to analyze a cul-
tural asset. At the Bayon Temple in Cambodia, microorganisms
are one cause of deterioration in the inner gallery. Fig. 8 show
the microscope images of microorganisms observed at each spot.
Due to deterioration, the detailed bas-reliefs on the walls are los-
ing their shapes. We examined the kind, distribution, and repro-
ductive cycle of the microorganisms to find an effective method
to remove them.

Microorganisims perform photosynthesis by absorbing the light
of a specific absorbance spectrum via sunlight, so the waveforms
of absorbance spectra vary according to the type of photosyn-
thetic pigment in each microorganisim, as shown in Fig. 9. For
example, the absorbance spectrum of gleen agle is shown as the
linear sum of the absorbance spectra of chlorophyll A and B.
And, Cyanobacteria mainly has chlorophyll a and phycocyanins.
Based on above understanding, we assumed that some of them
could be discriminated by detecting the absorbance spectra of
photosynthetic pigments in them, and we found we could cal-
culate absorbance from reflectance.



Figure 8: Microbial growth on the wall surface: microscope im-
ages of microorganisms observed at each spot.

Figure 9: Absorbance of photosynthesis pigments: green algae
mainly has chlorophyll a and b. Cyanobacteria mainly has chloro-
phyll a and phycocyanins.

Fig. 10. a shows the image of the scene we observed. Then, we
found correspondences among multispectral images in different
seasons to the same area through 3D data.

The results in Fig. 10. b show the measured absorbance spec-
trum of each segmented area. The three areas, depicted using
blue, white, and red colors in the figure, should be differentiated
by the quantity of phycocyanin. This is because the areas’ ab-
sorption has large differences at around 600 nm, which coincides
with the phycocyanin’s absorbance spectrum as shown in Fig. 9.
As Fig. 11 shows, white and blue areas decrease in a dry sea-
son compared to a rainy season, which implies that the quantity
of phycocyanin has decreased in the dry season. The results in-
dicate that the cyanobacteria, the main source of phycocyanin,
increase in a rainy season and decrease in a dry season.

Figure 10: (a) Observed scene image: this scene was made by
mapping a multispectral image onto 3D data. (b) Absorbance
spectrum in each class area.

6 SUMMARY

This paper proposed a novel multispectral imaging system and a
segmentation method for multispectral images. Our system can
efficiently obtain a wide view angle image in an outdoor envi-
ronment, and also segment a high-dimensional spectral image ef-
fectively. In our experimentation, we found that our proposed

Figure 11: Segmentation results of microorganisms. (a) Rainy
season (b) Dry season

multispectral imaging system has sufficient accuracy for material
segmentation. Furthermore, our multispectral image segmenta-
tion method could effectively segment a layered surfaces into dif-
ferent spectra. The system also analyzed microorganisms on bas-
reliefs in the Bayon Temple. Our experimental results showed the
reproductive cycle of microorganisms in rainy and dry seasons.

Our next task using the proposed system is to consider the rela-
tionship between the reproductive cycle of microorganisms and
the environment of bas-relief.
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