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Abstract: 

The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming  
increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it  
is  often  desirable  to  use  this  data  for  applications  other  than  documentation.  For  these  purposes  a  
triangulated model is usually required. The generation of topologically correct triangulated models from  
terrestrial  laser  scans,  however,  still  requires  much  interactive  editing.  This  is  especially  true  when  
reconstructing  models  from  medium  range  panoramic  scanners  and  many  scan  positions.  Because  of  
residual errors in the instrument calibration and the limited spatial resolution due to the laser footprint, the  
point clouds from different scan positions never match perfectly. Under these circumstances many of the  
software  packages  commonly  used  for  generating  triangulated  models  produce  models  which  have  
topological  errors  such  as  surface  intersecting  triangles,  holes  or  triangles  which  violate  the  manifold  
property.

We present an algorithm which significantly reduces the number of topological errors in the models from  
such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces  
are resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified  
algorithm  partitions  the  data  into  tiles  and  can  thus  be  easily  parallelized.  Furthermore,  it  avoids  
introducing topological errors in occluded areas, albeit at the cost of producing models which are no longer  
guaranteed to be closed. The algorithm is applied to scan data of sculptures of the UNESCO World Heritage  
Site Schönbrunn Palace and data of a petrified oyster reef in Stetten, Austria. The results of the method’s  
application are discussed and compared with those of alternative methods.

1. INTRODUCTION
There are many different instruments on the market for performing Terrestrial Laser Scannning (TLS). These 
instruments vary considerably with respect to their measuring principle, accuracy, speed, range and purpose.  
Therefore also the strategy for processing the data needs to be adapted to the advantages and disadvantages  
of the respective instrument. The choice of instrument is mainly driven by the scale of the objects to be 
scanned. Small objects measuring from a few centimeters up to a few meters can be scanned using close 
range scanners. These scanners have a high accuracy, but also a limited range (several meters) and a limited 
field of view. It is therefore necessary to build the final point cloud by merging scans from many different 
scan positions. This can become very expensive if it is not  automated. 

Larger objects measuring from a few meters up to hundreds of meters can only be scanned efficiently using 
medium to long range scanners which have a wide field of view, typically panoramic, and a theoretical  
maximum range of up to hundred meters, sometimes even more. The accuracy, on the other hand, of these  
scanners is lower when compared to close range scanners, despite some improvements in recent years. The  
challenge when working with data from these instruments, compared to close range scanners, thus shifts  
from registering a multitude of individual scans to dealing with measurement errors, both random noise and 
systematic errors. In this paper we will exclusively focus on this latter class of instruments. 



While the point cloud by itself is sufficient for satisfying many documentation needs, it is often desirable to  
use this data for applications other than documentation. For these purpose a triangulated model is usually  
required. Surface reconstruction from point clouds is a well studied problem and a great number of different  
algorithms solving it have been developed. It is also available in commercially available software packages 
such as Rapidform, Geomagic Studio, or Polyworks. Most of them, however, work best when applied to data 
acquired  using  close  range  scanners,  or  when  the  data  acquired  using  medium range  scanners  is  of  a  
relatively low resolution. 

However, when exploiting the full potential of medium range terrestrial laser scanners, i.e. using them at  
high  resolutions,  generating  topologically  correct  triangulated  models  is  still  a  challenging  task,  which 
typically  involves  much  interactive  editing.  The  main  reason  is  that  because  of  residual  errors  in  the  
instrument calibration and the limited spatial resolution due to the laser footprint,  the point clouds from 
different  scan positions  never  match  perfectly.  Under  these circumstances  many of  the  commonly used  
algorithms for generating triangulated models produce models which have topological errors such as surface  
intersecting triangles, holes or triangles which violate the manifold property [1].

In this paper we present an algorithm which significantly reduces the number of topological errors in the 
models from such data, when compared with the results of commercial software packages. The algorithm is a  
modification of the Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the  
data and the algorithm always produces a closed manifold surface. The surface will be closed even when the  
sampling of the surface is incomplete, e.g. because of occlusions. While this is a desirable property in many  
applications, for documentation purposes this arbitrary closing of surfaces can be problematic, especially 
since this closing might not even be topologically correct. Our modified algorithm restricts the surface to  
sampled areas and thus these errors can be avoided, albeit at the cost of producing models which are no 
longer guaranteed to be closed. 

Our modified algorithm is tested on a dataset consisting of a number of small point clouds, along with the 
original  Poisson  surface  algorithm  and  the  algorithm  available  in  the  commercial  software  package 
Geomagic  Studio  11.  Using  these  datasets  we  demonstrate,  that  our  algorithm does  indeed perform as 
designed, both in simple as well as in challenging situations. To demonstrate the applicability to large real  
world datasets it is applied to scan data of sculptures of the UNESCO World Heritage Site  Schönbrunn 
Palace as well as data of a petrified oyster reef. 

2. RELATED WORK
The data from terrestrial laser scanners consists of a set of point samples of all the surfaces within the line of 
sight of the scanner. Because of occlusions the data from many scan position need to be merged into one  
point cloud. The resulting point cloud is unstructured, i.e.  it does not contain any information about the  
topologically correct relations between the points. Furthermore the point cloud usually contains both noise 
and systematic errors. Therefore the accurate and correct reconstruction of the originally sampled surface  
from TLS data is a challenging problem. 

There are two basic approaches to surface reconstruction. One approach is to utilize geometric properties of  
the point cloud. Examples of this approach include algorithms such as alpha shapes [2],  power crust [3], or 
VRIP [4]. Algorithms which try to construct highly generalized models by fitting geometric primitives also 
fall into this category. The common property is that an explicit description of the surface itself is constructed. 

The alternative are so-called implicit  surfaces.  Here the goal  is  to find a function defined on the entire 
volume around the object. The surface itself is then defined as an iso-contour of this scalar field. Examples  
of this approach include the implicit surface framework described in [5], and Poisson surfaces [6],[7], which 
are the basis of this work. 

2.1 Poisson Surfaces
The idea behind Poisson surfaces is to look at an indicator function, which is zero outside the object and one  
inside. Since this function is not continuous, it is smoothed by convoluting it with a Gaussian function, or an  
approximation thereof. It can then be shown, that the true surface normal vectors are samples of the gradient  



field of the convoluted indicator function. Since in reality the true surface normal vectors are unknown, the  
surface normals  are estimated from the scanned point  samples.  The point  samples contain measurement 
errors, thus the function that is sought is the one whose gradient field is closest to the gradient field estimated 
from the point cloud. The solution of this variational optimization problem is a Poisson equation, thus the  
name Poisson surfaces. 

The solution of the Poisson equation is the convoluted indicator function, which is a scalar field defined in  
the entire volume enclosing the object. To compute the solution this volume is discretizised into voxels. The 
final surface can be located with sub-voxel precision, nevertheless a fine discretization is needed for good  
results. Because of the enormous amount of memory that would otherwise be necessary this needs to be done 
using an octree, a datastructure enabling that the full resolution is only used close to the surface. This does  
not impact the accuracy of the solution, since away from the surface the indicator function is constant. The 
achievable spatial resolution is determined by the maximal depth of the octree, and thus depends on the point  
density and the  smoothing function used. 

2.2 Surface Normal Vectors
To estimate the surface normal vectors it is necessary to estimate the tangential plane for each point of the  
surface. The most common and straightforward approach is to perform a least squares fitting of a plane to a 
compact neighborhood of sample points. For homogeneously sampled surfaces, as it is typically the case 
with close range data, this works well. For panoramic TLS instruments, however, the point density is usually 
very inhomogeneous due to the wide range of measured distances. To get consistent results w.r.t estimation  
error and smoothing properties it is necessary to locally adapt the size of the neighborhood [8]. 

In practice the data from TLS contains a quite significant number of outliers. For instruments utilizing the  
phase-shift  measurement  principles  the  main  source  of  outliers  is  the  fact  that  the  laser  beam  can  
simultaneously illuminate more than one surface. In this case the measured distance is an average of the  
distances to the illuminated surfaces and thus does not correspond with any existing surface. This always  
happens at the silhouette of objects. Other sources of outliers are glossy surfaces, which under certain angles 
can either saturate the detector due to their high reflectivity, or lead to multi-path effects by reflecting the 
laser beam like a mirror. Even in the absence of such effects, it is also not guaranteed that all the points  
within the neighborhood used for estimating the tangential plane lie indeed on the same surface. They might 
be beyond a sharp edge, or on a parallel surface if the material is thin. These points can thus appear like 
outliers, when they are used to estimate the tangential plane for a surface they don't belong to. 

To deal with these situations robust estimation techniques can be used. Robust estimators take much more 
time  to compute  and are  also not  optimal  with respect  to  their  statistical  efficiency.  However,  they are  
unaffected by outliers and thus allow to identify outliers more reliably [9], thus making them a worthwhile 
addition to the processing toolbox. Robust estimators that have successfully been used in this context include 
the fast minimum covariance determinante estimator  [10],[11] and an estimator based on robustly adapted 
kernel density estimation [12].

3. METHOD AND IMPLEMENTATION
The algorithm we present in this paper uses the Poisson Surface technique. However, we implemented it  
differently  than  described  in  [7].  The  key  difference  between  our  implementation  and  the  original 
implementation is that we do not solve the system globally, but rather split the system into small cubes and 
independently solve the systems locally and in a second step correct the errors that occur along the boundary 
of  the  cubes.  The  main  advantage  of  our  approach  is  that  it  is  more  easily  parallelizable  and  can  be 
implemented using data streaming. Thus it is more suitable for very large datasets and scales better when run  
on clusters of machines. We achieve this localization by restricting the domain  Ω on which the indicator 
function χ is defined to areas close to the surface rather than the entire bounding box around the object. This 
is illustrated in Figur 1. 



Figure 1: Illustration of the Poisson Surface algorithm: a) sample points, surface normal vectors, domain Ω 
and domain boundary ∂Ω, b) smoothed indicator function χ and c) iso-contour for the original 

implementation and d) sample points, surface normal vectors, domain Ω and domain boundary ∂Ω, e) 
smoothed indicator function χ and f) iso-contour for the modified implementation. 

Restricting the  domain in such a way has the disadvantage that the surface is no longer guaranteed to be 
closed and it raises numerical problems. There are two main reasons. The first is that the boundary can 
become quite complicated and secondly the Dirichlet boundary condition ∂Ω = 0 is only true on the outside 
and thus only applicable to the outer boundary. On the inner boundary the Neumann boundary condition  
grad(χ) ∙ n  = 0, where n denotes the normal vector of χ,  must be used. Unfortunately, a system of partial 
differential  equations  containing  a  Neumann  boundary  condition  along  a  complicated  boundary  is 
numerically challenging to solve, at least when using finite differences. To mitigate these difficulties we used 
the approach described in [13] and additionally used the dilate morphological operator on the voxel grid to 
smooth the boundary and move it away from the surface where these errors resulting from the discretization 
of the problem domain matter less. The dilate operator also enables the algorithm to close small holes which 
may exist in the sampling. 

The resulting system of partial  differential  equations is  much too large to be solved directly.  Therefore 
iterative approximation solvers must be used. In [7] the octree used for the organization of the data is used to 
construct  a  multigrid  solver.  This  approach  profits  from  the  fact  that  the  solution  is  constant  almost  
everywhere except near the surface. In our approach, however, the solution is undefined almost everywhere,  
except  near  the  surface.  Therefore  the  multigrid  approach  cannot  be  used.  Instead  we  use  a  domain 
decomposition solver based on the additive Schwarz method [14]. In his method the entire domain is divided 
into overlapping subdomains, and the results from solving the problem on one subdomain are added the other 
overlapping subdomains to compensate the errors. This procedure is iterated until the errors are sufficiently 
small. Here the domain restriction is advantageous. Since solution components with a low frequency are not 
possible the solution converges quickly even without using a coarse grid. 

4. RESULTS 
We tested our implementation of the Poisson surface algorithm on three datasets. The first is synthetic and  
consists of sample points on a plane and on a sphere with various levels of noise. The advantage of the  
synthetic  data  is  that  the  ground truth is  known and the performance  of  the  algorithm can be assessed 
accurately. The other two datasets are from actual scan campaigns.  

4.1 Synthetic Datasets
This dataset consists of five small point clouds. They were constructed to evaluate the characteristics of the 
algorithm in situations which are commonly encountered in laser scanning data. The point cloud consists of 
3600 points on a plane, i.e. the data is error free. In reality data is never error free, but data from close range 
scanners and data from a single low-resolution panoramic scan is usually quite close to this ideal. The second 



and third point cloud are the same points, but a gaussian range error was added, having a standard deviation  
of one and three millimeters, respectively. The spacing of the points is one millimeter in each direction. 

This might seem like an unrealistically large error, especially with respect to the point spacing. However, 
while this is true for a single scan, it is not unrealistic when multiple scans are combined. With modern  
panoramic scanners a point spacing of one to five millimeters and a noise level of 0.3 to 0.5 mm can be 
achieved even when keeping scan times down to a few minutes, assuming that a maximum scanning distance  
of 10 meters is not exceeded. The scan data from multiple scan positions will usually not match perfectly,  
since residual errors in the instrument calibration cannot be corrected using the rigid body transformation  
used  in  registering  the  scans.  These  are  systematic  errors  which  can  be  up  to  several  millimeters  in  
magnitude. When combining data from two or three scan positions a combined standard deviation of one 
millimeter and a point spacing of one millimeter is not uncommon. When using older instruments, e.g. when 
dealing with data acquired a few years  ago,  or  when using current  instruments  under very unfavorable  
conditions, e.g. when using an unstable platform or very dark surfaces, the errors are even higher. The point  
cloud with three millimeter standard deviation is designed to mimic this situation. 

Finally the fourth and fifth point cloud are 7200 points on a small sphere with a radius of 6 centimeters.  
Again, one of the point clouds is error free, the other has an added Gaussian error with a standard deviation 
of one millimeter in the direction of the surface normal. This dataset is designed to show the behavior of the  
algorithm on surfaces with a fairly high curvature.

Table 1 shows the results of comparing the vertices of the final surface with the known ground truth for the 
three surface generation methods. There is a small, but nonetheless significant, deviation from the expected 
mean distance for both Poisson surface implementations, i.e. the surface estimator is biased. This is the case 
even for the error free dataset. The surface constructed with Geomagic Studio 11 does not show this bias.  
Since for Poisson surfaces the final surface is the iso-contour of a scalar field, it needs to be examined this 
bias can be reduced by calibrating the value of the iso-contour. 

Poisson Surfaces Localized Poisson 
Surfaces

Geomagic Studio 11

Mean 
Distance

Standard 
Deviation

Mean 
Distance 

Standard 
Deviation

Mean 
Distance 

Standard 
Deviation

Perfect Plane 0.016 0.019 0.014 0.019 0.000 0.000
Noisy Plane (σ=1mm) 0.037 0.082 0.082 0.090 0.005 0.746
Noisy Plane (σ=3mm) 0.246 0.136 0.147 0.265 0.004 2.245
Perfect Sphere 0.014 0.053 0.018 0.097 0.000 0.000
Noisy Sphere (σ=1mm) 0.028 0.190 0.126 0.343 0.023 0.799

Table 1: Comparison of absolute mean and standard deviation of the distances between surface vertices and 
the known ground truth for the three tested algorithms

On the other hand, the noise reduction properties of the Poisson surfaces is excellent. The residual noise in 
the surface is reduced by more than one order of magnitude when compared to the noise level of the original  
point  cloud and there  are no topological  errors.  Our  localized version of  the  Poisson surfaces  does  not  
perform quite as well as the original implementation in this respect. This effect can also be seen in Table 2, 
where images of the resulting surfaces are shown. Table 2 also shows that for the localized version the errors  
are spread equally over the entire surface, whereas with the original implementation the errors are located  
mostly towards the edges of the surface, which bends away from the plane, whereas in the central part the 
errors are less. The reason is that for this point cloud the assumption that the points lie on a closed surface is  
not valid. It still needs to be examined why the localized version of the Poisson surfaces does not perform as  
well as the original implementation w.r.t. the noise suppression. The most likely reason, however, is that we 
used a smaller, simpler but also less accurate discretization of the problem space. 



Poisson Surface Localized Poisson Surface Geomagic Studio 11
Noisy Plane (σ=1mm)

Noisy Plane (σ=3mm)

Noisy Sphere

Table 2: Visualization of the estimated surfaces for the synthetic datasets. 

It can also be seen in Table 2 that when the noise level is relatively high, the surface reconstruction built into 
Geomagic Studio 11 completely fails to produce a useful surface, despite efforts on our part to utilize the  
built  in  noise  reduction facilities.  We want  to  stress  that  this  is  not  a  problem of  Geomagic  Studio in 
particular.  The results would not look much different with other commercial software packages. Dealing 
with this kind of data is very difficult  and the only thing that helps is to reduce the point density,  thus  
reducing the relative noise level. That, however, inevitably causes a loss of detail. This can also be seen with  
the oyster reef dataset. 

4.1 Schönbrunn Attic Sculptures Datasets
The second dataset consists of 400 individual scans of 50 attic sculptures of the UNESCO World Heritage 
Site Schönbrunn Palace. The sculptures were removed for restoration and scanned after the restoration was 
complete. For each sculpture a total of 8 scans were acquired from two height levels. A Faro Photon 120 
scanner was used at medium resolution (¼ scans), but from a distance of no more than 5 meters, resulting in 
an average point spacing of 2 mm per scan. Before the surface reconstruction the data was preprocessed and 
registered.  The  preprocessing  stages  consisted  of  outlier  removal,  random noise  reduction,  and  surface 
normal estimation [1]. The outlier removal was performed primarily to eliminate the erroneous points that  
occur along the silhouettes of the arms and legs of the sculptures. After registration of the scans the surface  
reconstruction was performed using both the Poisson surface algorithm and Geomagic Studio 11.  Figure 2 
shows the result for one of the more elaborate sculptures. 

The model generated using the Poisson surface algorithm is clearly visually more appealing and would not  
need  barely  any  interactive  editing  if  it  were  to  be  used  for  visualization  purposes.  In  the  surface  
reconstructed using Geomagic Studio 11 the problems in the data are still clearly visible. The roughness of 
the surface is the result of residual registration errors, which is especially pronounced in the face and on the  
outside of the arm which are seen from multiple scans. Areas which are occluded in all but one scan, such as 
the part of the chest behind the arm, do not exhibit this roughness. The rims which are visible along the chest  
and neck are the result of outliers due to the silhouette effect, which were close enough to the surface points  
to pass the outlier filter. The Poisson surface algorithm is capable of concealing these deficiencies in the 
data. 



Figure 2: Schönbrunn Attic Sculpture. a) entire sculpture b) reconstructed surface using Poisson surface 
algorithm c) differences between Poisson surface and original points d) reconstructed surface using 

Geomagic Studio 11 and e) differences of Geomagic Studio surface and original point cloud. 

When looking at the accuracy of the models, the situation is quite different, however. The difference model  
comparing the reconstructed surface with the points used to reconstruct the surface shows predominantly 
shades of blue for the Poisson surface. This means that there is a systematic bias, a trait of the algorithm that  
was also present  in the  synthetic  dataset  and discussed there.  If  the geometric model  is  to be used for  
documentation purposes other than visualization, e.g. monitoring or change detection, such a bias is not 
desirable. The surface reconstructed with Geomagic Studio on the other hand almost exclusively shows cyan 
and yellow colors. This means that the surface never deviates more than 0.5 mm from the original points. 

4.2 Petrified Oyster Reef Dataset
The third dataset we used for our experiments consisted of 8 scans of the world's largest accessible petrified  
oyster reef located in Stetten, Austria. The exposed area is approximately 20 by 15 meters large, the scan  
positions are located along the boundary of the area. The challenge with this dataset is that the scans were  
acquired using the low resolution setting of the instrument (Leica HDS 6000) and from a very shallow angle,  
despite the size of the area to be scanned. The result is that there are large areas which have a point density  
which  is  significantly  lower  than  one  point  per  centimeter.  Due  to  the  very  shallow angles  there  are  
numerous outliers due to the silhouette effect, which are very hard to detect due to the low point density and 
which are an impediment for an accurate registration. Furthermore, there is very little overlap between the  
individual scan positions due to their large distance and the shallow angles. The goal was to reconstruct a 
surface that accurately documents shapes of the petrified structures. The results are shown in Figure 3. 

Two models were constructed, one interactively by a skilled operator using Geomagic Studio 11 (3c), the  
other using the Poisson surface algorithm (3b). For reference a model was constructed using only a single  
scan (3a). Comparing the models it can be seen that the Poisson surface model preserves more detail than the 
interactively edited model. However, when compared to the model determined from the single scan, it can be  
seen that the sharpness of the edges of the original is completely lost in both models. Thus neither model  
fulfills the goal of documenting the petrified shapes. A high point density is a necessary condition if sharp  
edges are to be represented accurately. 



Figure 3: The oyster reef data. a) triangulation of a single scan, b) Poisson surface reconstruction of all 8 
scans and c) interactively created surface using Geomagic Studio 11.  

5. CONCLUSIONS
Panoramic terrestrial laser scanners are much more cost efficient as close range scanners when scanning  
objects which are larger than a few meters.  However,  when deriving surface models  from this data for 
visualization purposes, currently much manual effort is needed to clean the surface of artifacts. In this paper 
we showed that by using the Poisson Surface algorithm it is indeed possible to significantly reduce this  
effort, provided that the point density of the combined point cloud is high enough. Low point density leads to 
strong smoothing over sharp edges. The benefits are that residual errors in the registration and a few outliers 
can be tolerated. 

The main advantage of the presented methodology is that it produces a geometric model which can typically  
be directly used for visualization purposes without requiring further interactive editing. Manual closing of 
holes is only necessary if the scan data has large uncovered areas. The field of smoothed surface normal  
vectors which is produced as part of the algorithm is ideally suited for the derivation of a high-resolution 
normal  map  for  texture  rendering.  This  is  especially  beneficial  for  real-time  rendering,  since  for  this 
application the polygon count of the model needs to be dramatically reduced.

The determined surface, however, always exhibited a systematic deviation from the mean position of the 
points. Future research is required to determine the cause of this behavior. As long as the reason is not  
known and this bias cannot be corrected, the use of this method for purposes other than visualization cannot  
be recommended. However, since for documentation purposes, the point cloud itself is usually sufficient, this 
does not prevent the method from being used for cultural heritage documentation, when the original point  
cloud is kept for reference. 

We used a modified implementation of the Poisson surface algorithm which solves many local  systems  
instead of a large global system. The advantage is that the localized version scales very well using parallel 
computation and data streaming can be used to keep the memory footprint low. Another characteristic of the 
modified implementation is that the resolution can be chosen consistently and independently of the point 
spacing. The errors in the solution for the indicator function is  slightly worse for the modified version,  
because of a less accurate  discretization.  This  can be offset,  however,  by using a smaller  discretization 
interval. The reduced memory footprint and improved parallelization of the modified implementation makes 
it possible to use the method for very large dataset consisting of many billions of points. 
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