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ABSlRACT 

Photogrammetry ls well recognized as the main tool in capturing and re­
cording sites and monuments of architectural interest. Recent trends in pho­
togrammetrlc research are targeted towards the optimization of the design of 
the photogrammetrlc network. Criteria used include not only the photo-pair 
overlap, but also the dedlred optimum accuracy of the final product. 

The object of this research ls the optimization of a two-photo configura­
tion for the recording of the near flat facade of an architectural monument. 
It ls finally shown that the geometric characteristics of the optimum photo­
pair configuration can be computed from relative simple "optimization poly­
nomials", the coefficients of which depend only on the camera charavterl­
stlcs and the object dimensions, thus by- passing the time consuming Non­
Linear Progrcllllllllng computations. 

INTRODUCTION 

In recent years it ls well known that many countries are seriously inte­
rested in systematic knowledge and malntalnance of their architectural tra­
dition. A basic tool ls the registration and survey of architectural monu­
ments, as it ls often emphasized in related meetings, symposia etc. (e.g. 
ICOHOS, 1981). 

This survey must include: 

~ Knowledge of the geometrical characteristics of the monument at a 
specific time 

~ Unlfora accuracy 
~ The most possible metric and quality information 
~ Easy to approach Monument Intergrated Systems 

All the above characteristics lead to the method of architectural photo­
grammetry (Dallas, 1980) which can fully satisfy all user needs, economical­
ly and quickly. 

The method ls devlded ln three main parts: 

~ Photo-coverage of the monument 
~ Measurements and observations on these photos 
~ Production of the final product (plan, section, thematic map, archive, 

orthophotography etc.) 

The first two parts materialize the photogrammetrlc network as it ls 
usually called in photogrammetry. The accuracy of the final product depends 
on the design of this net (Z1nrdorf, 1986). 

In this paper the optimization of the design of a two-photo photogram­
metrlc network will be examined. This kind of the networlc, known also as 
st'ereo-palr, ls often used in architectural surveys (ICOHOS, 1981). The 
photos are assumed metric. 
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THE lHEORETICAL ACCURACY OF -lHE STEREO-PAIR 

Mathematic Model 

The parameters of the mathematic model of the stereo-pair can be devlded 
in two categories: 

a· Those that define the geometric model, i.e. 
The elements of photo exterior orientation. These 
camera station coordinates and cameras orientation 
The coordinates of the check points on the object 

b· Those that define the stohastlc model, i.e. 
Random observation errors 

consist 
angles. 

of the 

Systematic errors caused by the degree of reliability of the 
mathematical model used to adjust the observations. 

All the above information must be known in advance, in order to compute 
the accuracy of the survey. The difference between (theoretic) accuracy 
which depends on the observations' analysis and precision (or reliability) 
which depends on the closeness of observation to rellty, must be reminded 
here (see also Hottler, 1976). 

The mathematic model which ls often used in photogrammetric networks is 
the colllnearlty equations (Hanual of Photogrammetry, 1984, p. 88). Every 
check point gives 4 such equations and the linearized system of observation 
equations can be written as 

A'. x + v = b (1) 

where "." denotes parameters of 'exterior orientation and 
points coordinates and 

x : vector of parameters , 
y: vector of photo coordinates corrections 

" " the check 

b :vector of differences between observed and approximate photo-coordinates 

The solution is given by ~ = lPb (2) 

where N ls the normal equations matrix 

N= [ ::] ,[Ax]= [ ATP A 

°lPA ::: : ] (3) 

and p ls the weight matrix of the observatios. For _check points accuracy 
. -1 

analysis, the covariance matrix N or c~ must be computed. 

Partial inner constraints 

The matrix N has a rank defect d=m-r=7 (Helssl, 1969), where m is the 
number of parameters and r ls the rank of N, because the observations on the 
photos give ~~ information for the reference ground coordinate system. So, 
the matrix N cannot be computed unless 7 parameters are held constant, 
i.e. 
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ex= z (4) 

where C ls a known dxm full rank (d) matrix and z a known vector. These con­
straints are also called minimum, because they are 7. It can be proved 
(Helssl, 1965) that the best cholse of matrix C ls not by choosing 7 parame­
ters constant bat by establishing 7 relations between parameters, so that 

Ex= 0 (5) 

where Els the dxm matrix of these relations. The method is known as "inner 
constraints" and has two basic properties: It minimizes the trace of~ and 
the corrections of parameters, i.e. 

n 

tr(CA) = L ~:=min 
' X l =1 l 

In our case matrix_ Els (Dermanls, 1991) 
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(7) 
Using this matrix, the covariance matrix of the parameters ls 

+ T . -1 T T -2 
CxE = N = C tt+ E E) - - E C EE ) . EE (8) 

+ where N ls the pseudo-inverse of N· An alternative form for (8) which ls 
computationally easier can be obtained by similarity transformation of a 
minimum constrained solution 

(9) 

where S ls the tranformation matrix 

T T -1 
S = .I - E ([ E ) . E (10) 

and~ the covariance matrix of a minimum constrained solution. When we are 

interested in a subset of the network's param~ters, S can be accordingly 
adjusted: 
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T T - 1 5c= I - E Cc E ) C ( 11) 

where C = [ O [ ] for better check points accuracy, or C = [ £ O ] for 
better exterior orientation parameters accuracy. 

The method of inner constraints can be easily applied in photogrammetric 
projects, as they are usually not referred to. a specific ground coordinate 
reference system (as is often the case in geodesy), which can be indepen­
dant. 

In the case of monuments facades surveys, adjustment ls usually devlded 
in two stages: 

~ In the first, selecting a few points (e.g. 6) which cover all the 
facade and which are measured with topographic methods. These are 
the control points used for the determination of the 12 parameters 
of exterior orientation, t· 

~ The measuring of any point of the object and computing its ground 
coordinates using the already computed 12 ext.orientation parameters. 

Mathematically, this means that in the first stage apartial inner con-r stralnts adjustmentwhich minimizes the norm Ct tl can be used and then by 
using the parameters t and their covariance matrix, the covariance matrix of 
every measured check point can be computed. The covariance matrix of parame­
ters tis (D1man1d1s, 1991) 

(12) 

where c ls the covariance matrix of t from a minimum constraints adjust­
t 

ment. The covariance matrix we finally need is 

-A -1- -T -1 -1 '-x = N N CicN N + N 

STEREO-PAIR DESIGN OPTIMIZATION 

The general case 

(13) 

The optimization problem which will be examined here is to attain the 
highest possible accuracy for points on a facade by changing the design of 
the stereo-pair, i.e. the parameters t· The problem is known as first order 
design optimization (Schmitt, 1985) . 

The specific criterion based on~ which was used, is the sum of the vo­
X 

lumes e of error ellipsoids of every check point on the facade is minimum: 
J 

r {vol(e >}=min 
J=l J . 

(14) 

This criterion is known also in Statistics as D criterion and it - is rela­
tive to the determinant of~ and to the product of its eigenvalues. 

X 
Another critical point for the optimization procedure are the limits be-

tween which th~ parameters t can vary. These limits are defined by the 

~ Topography of the surroundings 
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~ Coverage of the object in both photos 
~ Swing and scale limits of the photogrammetric analog instument (if used) 

All these limitations can form equalities and inequalities (Dimanidis, 
1991) which also contain the optimization parameters i· These can be gene­
rally expressed as 

h
1 

Cx) = O, 1=1 .. m and g ,x) ~ o , i=m+l .. p (15) 

The problem of finding t, as defined in (14) & (15), ls a well known Non­
Linear Programming (NLP) problem and can be solved with numerical methods 
(Hlmmelblau, 1972, Chap.8). 

The case of near-flat facades covered by s.Yllllletrical photo-pair. 

In this case assuming that the .object of the survey ls near flat and in 
order to increase accuracy and stereoscopic viewing, some symmetries in pho­
to-pair design can be established: 

~ Cameras at the same height 
~ Cameras at the same distance from the facade 
~ Same camera convergence and tilt 

Swing round the projection axis (,c) can also be kept 0, as it does not 
influence object accuracy (Zlnrdorf, 1986, p.52). 

The optimization parameters are finally reduced to five, namely dlstanc~ 
between the two cameras, i.e. base B, distance from facade D, camera height 
Y and camera convergence , and t1 lt 111. All the above asswnptions are valid;. 
Exceptions for the established symmetries are due to surroundings limita'­
tlons, as it ls shown in the example given in the next paragraph. 

When these limitations do not exist and the symmetric photo-pair is assu, 
med! it can be proved that if the 5 optimum parameters B,D,Y,;,w for a • 
spe 
clflc facade with length Lare computed, optimum ratios B/D and D/L will re­
main the same for every facade with length L'~L when; and w remain the 
sa 
me, but also when the length to height ratio remains the same (Dimanidls, 
1991). 

B B' n = D' & (16) 

For generalization purposes, the height of the facade can also be assumed 
variable, and in that case onother two ratio equalities are valid, namely 

D D' 
Hup = Hup' & 

D D' 
Hdown - Hdown' (17) 

where Hup and Hdown are height differences of up and down limit of 
simulation facade from camer~ height. 

In order to examine the accuracy of this constant length Land variable 
n,elght simulation facade for any symmetrical photo-pair design configura­
tion, check points must cover all this overlap "zone" of length L. One usual 
way of doing this is by assuming a grid over the facade and computing the 
optimization criterion (14) for every grid node. This technique ls shown in 
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Fig.1, where the two overlap photos of a stereo-pair and the "zone" 
stant length Sin are drawn. The step of the grid must be such, until 
value of criterion for all points doesnot significantly change by 
increase of the step value. 

of con­
average 
further 

In Table 1, 10 different symmetri­
cal photo-pair configurations are 
presented, and the percent of the 
difference of mean error ellipsoids 
axis value for every grid density 
from the same value for max density 
(100 nodes for this example) to this 
value of max grid density. 

-_-t·-- f--·t---- --r----- -· _____ h-<J_::n 

t/l : lll.!I-P:IJ, B • 10., t • 15g, t • 7g, :J • I!., L • S. , H • 9.4-

Fig. 1 Grid on Constant length zone 

number of check polna 
B D ; "' 4 9 16 25 36 49 64 81 100 
13 6 42 14 8 . 9% 4.0X 2.3" -1.5X o. 9'( 0.6X 0 . 3" 0. tX o . ox 
14 6 40 7 8.6X 3.9X 2.2" 1.4X 0.9X 0.6X 0.3" 0 . 1X o.ox 
19 9 44 21 4.9% 2.2" 1.3" O.BX o.sx 0.3" 0.2" o.1x o.ox 
20 10 43 7 4.7" 2.lX 1.2" O.BX o.sx o. 3" 0.2" o.1x o.ox 
20 12 26 0 4.3" 1.9" 1.tX 0.7" 0.4X 0.3" 0.2" O. tX o.ox 
29 16 46 14 2.9X 1. 3X 0.7" o.sx 0.3" 0.2" o.1x o.ox a.ox 
34 26 24 0 1.9X o.ex o.sx 0.3" 0.2" 0.1X o. ~" o.ox o.ox 
35 20 45 7 2. 3" 1.0X 0.6X 0.4X 0.2" 0.1X 0.1,c o.ox o.ox 
36 20 45 21 2.7" 1.2" 0.7X 0.4X 0.3" 0.2X 0.1X o.ox o.ox 
47 28 44 14 2.1x 0.9X 0.5X 0.3" 0.2" o.1x O.lX o.ox o.ox 

average 4.JX 1.9X t.1X 0.7X 0.4X o.3" 0.2" O. lX o.ox 

Table _L Grid density dependency on value of accuracy criterion 

According to this table, if 25 check points :(grid nodes) are chosen, the 
average ellipsoid axis difference is under 1¼ of the 100 points average el-
lipsoid axis, which is a sutlsfylng value. , 

Optlmwa parameters can now be computed for v~rious photo-pair design con­
figurations and same facade length L, and a system of k linear equations be 
created: ' 

(18) 

The equations can be polynomials so x=l a a . . . a JT where (p-1) is the po­
l 2 _ p 

lynomial degree, and 

A = 

X 
p-1 
1 
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p-1 
2 

p-1 
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k_ 
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1 

X 
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2 

p-2 
X 

k 

X 
1 
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2 

X 
k 

1 

1 
(19) 

1 

where x ls;, D/L, D/Hup, D/Hdown successively and b = [ b
1 

b
2 
••. bk]T where 

b ls BID,;,; and; correspondingly. Solution is given by 

~ = (ATA)-1Ab (20) 
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The organization of the computations can be as follows: 

1. Choose a camera 
2. Choose a facade length 
3. Choose a camera height 
4. Choose a tilt angle • 
5. Optimize stereo-pairs for camera distances from facade between an upper 

and a lower limit (e.g. 50 - 4m). 

For different tilt angles repeat steps 4, 5. An example of polynomials 
coefficients polynomials ls given in Table 2. Such polynomials can be 
obtained for any metric camera. To use them, compute first D/L and then from 
polynomial f(D/L)~ with tilt w, compute;. With; D/Hup and D/Hdown can be 
computed. If Hup or Hdown ls not valid, try another tll t w' and compute 
parameters with an interpolation method between two polynomials for tilt >w' 
and tilt <w' (e.g. the Aitken method, see F.Sheld, 1968, pp.54-55). 

n, I> ; 

w 0.0 7.0 14.0 21.0 
; 19. 530 - 24.630 31. 936 - 45. 600 33.914 - 46.000 35.785 - 46.000 
1 2. 79414845D+OO -3.609349730+03 -1.619282SOD+03 -9.541720690+02 
2 2. 033300400+00 7.158670870+03 3.019229780+03 1. 829258810+03 
3 1 • 557406430+00 -5.605533100+03 -2.1776196SD+03 -1.328860980+03 
4 - 3 • 20430517D-01 2.191740980+03 7.8061SS920+02 4.792963680+02 
5 1. 817828320-02 -4.276548770+02 -1.39045646D+02 -8.582653740♦01 
6 3.3297624SD+01 9.84259098D♦00 6.102296780♦00 

B/) I> :; 
t.> 0.0 7.0 u.o 21.0 

• 19. :530 - 56.918 31. 936 - 56. 000 33.914 - 56.604 35.785 - 44.706 
1 7. '.241246700+01 7.275143260+01 7. 320186760+01 7.663514170+01 
2 -3. 951910680+01 -3.892894120+01 -3.90816641D+01 -5.SS251885D+Ol 
3 - 9. :98126841D+00 -6.74695230D+OO -4.64073753D+OO 3.1S018082D+01 
4 4. '.222611831>+01 3.330424360+01 3.02368374D+01 -1. Ol 99SS04D+Ol 
5 -3. '.71964164D+01 -2.576645490♦01 -2.359081170+01 l.392039420+00 
6 1 • 71733424D+01 8.89908594D+OO 8. 11533594D+00 
7 - 4 • 50860578D+00 -1.19919649D+OO -1.084785820+00 
8 6. 357910190-01 
9 - 3 • 7 40646550-02 

Table .1. Opll•- polyr.oalal coefflclents for syuietrlcal photo-pair 

Optiaization example 

The method presented applied in the 
survey of a NE part of the byzantine 
church of "Aglos Dlml trios" in Thes­
salonikl, Greece. The specific part ls 
surrounded (see Flg.2) by other parts 
of the monument so lt offers an inter­
esting application 'of the method. 

Two photo pairs were taken: An 
optimum (03-04)and a near-"normal ca­
se" one <01-02> in order to realize 
the significance of the optimization Flq.2 Photo-pairs for \".Aq.Dlattrlos" 
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procedure . Photo-pair 05-06 
shown in Fig . 2 is the opti­
mum with no limitations, taken 
from polynomials. The facade 
was covered with 26 points (6 
control and 20 check points) 
which were measured with a 
high accuracy 3-d topographic 
network. The parameters of the 
photo-pairs were: 

01-02: B=3. 19m, D=14.32m, 
,i. =-tp = lgrad W =W =0 
... 1 2 ' 1 ~ 
(near normal caae) 

03-04: B=6.88m, D=14.32m, 
grad ,p

1
=-,p

2
= 4. 96 , . l•\=W

2
=0 

(optimum caae) 

The 26 points were measured 
on the photots and the adjust­
ment procedure was carried out 
using a bundle adjustment pro­

Distances In m 

23 t7 1.486 
22 18 1.610 
10 6 1.864 

g e 1.e13 
,, 4 1.888 
14 1 1.908 
2 3 1.Q33 

13 2 1.937 
13 ,. 1,992 

4 6 1.9Q6 
3 • 1.998 
11 12 1.997 
1 2 1.998 

9 10 2.006 
12 13 2.006 
10 ,, 2.007 
6 0 2.022 

18 1g 2.061 
10 18 2.120 

23 22 2.142 
12 18 2.182 

22 19 2.3-415 
16 16 2.383 
1118 2.448 
13 10 2.610 
9 10 2.683 

13 16 2.638 
, .. 16 2.660 

18 23 2 .699 
11 17 2,699 
11 6 2.71-4 
9 6 2.733 

13 S 2.739 
11 3 2.7-40 

10 19 2.832 
8 7 2.896 

23 18 2.967 
7 g 3,3e0 
,, 18 3.308 
13 11 4.003 
1 1(5 4.468 

23 6 0.621 
22 7 7.738 

1 22 9.121 
1 10 10.281 

16 7 12.683 

! C:JT.Nel-P.Not:1-2 .T.Net -P .N01:3·4 I 

1 7 12.83 .. ~--'---'---'---="----'---'--_,_--' 
o.e o.o o., 0.2 o.o 0.2 o.4 o.o o.e (c;:m) 

Flg. 3 Comparison 0£ two distances serles 

gram. A criterion used to compare the two photo-pairs was the distances' 
differences between check points computed from the two solutions and those 
computed from the topographic network, which are shown in Fig. 3. It can be 
easily seen that; accuracy of 03-04 is almost twice as better from the 01-02 
photo pair. · 

Conclusions 
It has been shown how interesting and useful photo-pair design optimiza-

tion can be for· surveys of architectural monuments. The method presented 
needs no extra photos, Just a better design of the photo-pair. In case of no 
surrounding limi~ations, optimization polynomials can be used, which by-pass 
the time-consuming general optimization method and so the optimization para­
meters can be computed on site. 
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