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PHOTO-PAIR DESIGN OPTIMIZATION
IN ARCHITECTURAL PHOTOGRAMMETRIC SURVEYS

P.A.Dimanidis

ABSTRACT

Photogrammetry is well recognized as the main tool in capturing and re-
cording sites and monuments of architectural interest. Recent trends in pho-
togrammetric research are targeted towards the optimization of the design of
the photogrammetric network. Criteria used include not only the photo-pair
overlap, but also the dedired optimum accuracy of the final product.

- The object of this research is the optimization of a two-photo configura-
tion for the recording of the near flat facade of an architectural monument.
It is finally shown that the geometric characteristics of the optimum photo-
palr configuration can be computed from relative simple “"optimization poly-
nomials”, the coefficlients of which depend only on the camera charavteri-
stics and the object dimensions, thus by- passing the time consuming Non-
Linear Programming computations.

INTRODUCTION

In recent years it is well known that many countries are seriously inte-
rested in systematic knowledge and maintainance of their architectural tra-
dition. A basic tool is the registration and survey of architectural monu- -
ments, as it is often emphasized in related meetings, symposia etc. (e.g.
ICOMOS, 1981).

This survey must include:

> Knowledge of the geometrical characteristics of the monument at a
specific time

> Uniform accuracy

The most possible metric and quality information

> Easy to approach Monument Intergrated Systems

v

All the above characteristics lead to the method of architectural photo-
grammetry (Dallas, 1980) which can fully satisfy all user needs, economical-
ly and quickly. .

The method is devided in three main parts:

> Photo-coverage of the monument

Measurements and observations on these photos

> Production of the final product (plan, section, thematic map, archive,
orthophotography etc. )

v

The first two parts materialize the photogrammetric network as it is
usually called in photogrammetry. The accuracy of the final product depends
on the design of this net (Zinndorf, 1986).

In this paper the optimization of the design of a two-photo photogram-
metric network will be examined. This kind of the network, known also as
stereo-pair, is often used in architectural surveys (ICOMOS, 1981). The
photos are assumed metric.



THE THEORETICAL ACCURACY OF - THE STEREO-PAIR
Mathematic Model

The parameters of the mathematic model of the stereo-pair can be devided
in two categories:

a- Those that define the geometric model, 1i.e.
= The elements of photo exterior orientation. These consist of the
camera station coordinates and cameras orientation angles.
= The coordinates of the check points on the object

b- Those that define the stohastic model, i.e.
- Random observation errors
= Systematic errors caused by the degree of reliability of the
mathematical model used to adjust the observations.

All the above information must be known in advance, in order to compute
the accuracy of the survey. The difference between (theoretic) accuracy
which depends on the observations’ analysis and precision (or reliability)
which depends on the closeness of observation to relity, must be reminded
here (see also Hottier, 1976).

The mathematic model which is often used in photogrammetric networks is
the collinearity equations (Manual of Photogrammetry, 1984, p.88). Every
check point gives 4 such equations and the linearized system of observation
equations can be written as

[ AKX ] [ ; ] *v=b A?x *v=bh (1)

where " " denotes parameters of exterlor orientation and "." the check
points coordinates and '

x : vector of parameters
v : vector of photo coordinates corrections
b : vector of differences between observed and approximate photo-coordinates

The solution is given by M= Arpb (2)
where N is the normal equations matrix

T T P,T
A A K APA i APK .
R EIVY TR s
K KpA ! KPi
and p is the weight matrix of the observatios. For check points accuracy
analysis, the covariance matrix N or CQ must be computed.

Partial inner constraints

The matrix N has a rank defect d=m-r=7 (Meissl, 1969), where m is the
number of parameters and r is the rank of N, because the observations on the
photos give no information for the reference ground coordinate system. So,
the matrix N~ cannot be computed unless 7 parameters are held constant
i.e.
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Cx =z (4)

where ¢ 1s a known d,m full rank (d) matrix and z a known vector. These con-
straints are also called minimum, because they are 7. It can be proved
(Meissl, 1965) that the best choise of matrix ¢ is not by choosing 7 parame-
ters constant bat by establishing 7 relations between parameters, so that

Ex =0 ‘ (5)
where [ is the d,m matrix of these relations. The method is known as "inner

constraints" and has two basic properties: It minimizes the trace of cﬁ and
the corrections of parameters, i.e.

A
n - Ar A X
tr.(cQ) =i=la‘z1= min & tr {[ iy ir] [ ’x\ ]} = min (6)

In our case matrix g is (Dermanis, 1991)
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(7)

Using this matrix, the covariance matrix of the parameters 1is

Ce N = (nED - F D’ (8)

where "* is the pseudo-inverse of N. An alternative form for (8) which is
computationally easier can be obtained by similarity transformation of a
minimum constrained solution

T
= 9
Ce=SCy s (9)
where § is the tranformation matrix &
S=I1-EEE)E -~ (10)

and the covariance matrix of a minimum constfained solution. When we are

interested in a subset of the network’s paraméters, § can be éccordingly
ad justed: : ’

203



S T ——

s=1-E(E)c . (11)

where ¢ = [ g E ] for better check points accuracy, or ¢ = [ § ¢ ] for
better exterior orientation parameters accuracy.

The method of inner constraints can be easily applied in photogrammetric
projects, as they are usually not referred to a specific ground coordinate
reference system (as is often the case in geodesy), which can be indepen-
dant.

In the case of monuments facades surveys, adjustment is usually devided

in two stages:

> In the first, selecting a few points (e.g. 6) which cover all the
facade and which are measured with topographic methods. These are
the control points used for the determination of the 12 parameters

of exterior orientation, g.
> The measuring of any point of the object and computing its ground
coordinates using the already computed 12 ext.orlentation parameters.

Mathematically, this means that in the first stage apartial inner con-
straints adjustmentwhich minimizes the norm [g g] can be used and then by
using the parameters g and their covariance matrix, the covariance matrix of
every measured check point can be computed. The covariance matrix of parame-
ters g is (Dimanidis, 1991)

Ce™ - EEEN'D ¢ - £ 7D (12)
xC X
where cx is the covariance matrix of g from a minimum constraints adjust-

ment. The covariance matrix we finally need is

-1— =T -1 -1
0= 13
c; NNCN NN , (13)

STEREQ-PAIR DESIGN OPTIMIZATION

The general case

The optimization problem which will be examined here is to attain the
highest possible accuracy for points on a facade by changing the design of
the stereo-pair, i.e. the parameters . The problem is known as first order
design optimization (Schmitt, 1985).

The specific criterion based on cg which was used, is the sum of the vo-

lumes eJ of error ellipsoids of every check point on the facade is minimum:

Z {Vol(e )} = min (14)
j=1 )

This criterion is known also in Statistics as D critérion and it is rela-
tive to the determinant of cg and to the product of its eigenvalues.

Another critical point for the optimization procedure are the limits be-
tween which the parameters g can vary. These limits are defined by the

> Topography of the surroundings
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> Coverage of the object in both photos
> Swing and scale limits of the photogrammetric analog instument (if used)

All these limitations can form equalities and 1inequalities (Dimanidis,
1991) which also contain the optimizatlion parameters g. These can be gene-
rally expressed as

hi(x)‘= 0, 1=1.m and g{x) 20, t=m+l..p (15)

The problem of finding g, as defined in (14) & (15), is a well known Non-
Linear Programming (NLP) problem and can be solved with numerical methods

(Himmelblau, 1972, Chap.8).

The case of near-flat facades covered by symmetrical photo-pair.

In this case assuming that the object of the survey 1s near flat ahd in
order to increase accuracy and stereoscopic viewing, some symmetries in pho-
to-pair design can be established:

b Cameras at the same height
> Cameras at the same distance from the facade
> Same camera convergence and tilt

Swing round the projection axis (k) can also be kept 0, as it does not
influence object accuracy (Zinndorf, 1986, p.52). '

The optimization parameters are finally reduced to five, namely distance
between the two cameras, 1.e. base B, distance from facade D, camera height
Y and camera convergence ¢ and tilt w. All the above assumptions are valid.
Exceptions for the established symmetries are due to surroundings limita-
tions, as it 1s shown in the example given in the next paragraph.

When these limitatlons do not exist and the symmetric photo-pair is assu-
med, it can be proved that if the 5 optimum parameters B,D,Y,¢,w for a )
spe ;
cific facade with length L are computed, optimum ratios B/D and D/L will re-
main the same for every facade with length L’4L when ¢ and w remain the
sa ’ :
me, but also when the length to height ratio remains the same (Dimanidis,
1991).

B omB D -2 (16)

—_— = ——— & = —

D D’ T L’

For generalization purposes, the height of the facade can also be assumed
variable, and in that case onother two ratio equalities are valid, namely

D D’ D D’

fup ~ Hup’ & Hdown ~ Hdown” LE7d

where Hup and Hdown are height differences of up and down limit of
simulation facade from camera height.

In order to examine the accuracy of this constant length L and variable
height simulation facade for any symmetrical photo-pair design configura-
tion, check points must cover all this overlap "zone" of length L. One usual
way of doing this is by assuming a grid over the facade and computing the
optimization criterion (14) for every grid node. This technique is shown in
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Fig.1, where the two overlap photos of a stereo-pair and the "zone" of con-
stant length Sm are drawn. The step of the grid must be such, until average
value of criterion for all points doesnot significantly change by further
increase of the step value.

In Table 1, 10 different symmetri-
cal photo-pair configurations are
presented, and the percent of the
difference of mean error ellipsoids \ b0
axis value for every grid density
from the same value for max density
(100 nodes for this example) to this
value of max grid density. Fig.1 Grid on Constant length zone

84 WD, Be10e, ¢=15, o= 7g, D15, L=5s, H= S.4a

number of check poins

BI|D |¢ |o 4 9 16 25 36 49 64 81 100
13| 6{42{14| 8.9%| 4.0%} 2. 1.5%] 0.9%] 0.6X] 0.3%]| 0.1%| o0.0%
14| 6|40] 7| 8.6%| 3.9%| 2. 1.4%] 0.9%| 0.6%| 0.3%| 0.1%| 0.0%
19| 94421 4.9%| 2.2%| 1. 0.8%| 0.5%| o 0.2%| 0.1%{ 0.0%
20{10[43] 7| 4.7%| 2.1%| 1. o.8%] o.s%| o. 0.2%| 0.1%| 0.0%
20({12|26] 0] 4.3%| 1.9%| 1.1%| o.7%| 0.4%| 0.3%| 0.2%| 0.1%| 0.0%
29{16|46|14] 2.9%| 1.3%| 0.7%| 0.5%| 0.3%| 0.2%| 0.1%| 0.0%| 0.0%
34{26(24| o] 1.9x| o.8x| 0.5%| 0.3%]| 0.2%| 0.1x| 0.1X| 0.0%| 0.0%
35(20|4as| 7| 2.3x]| 1.0%| 0.6%| 0.4%| 0.2%| 0.1%| 0.1X| 0.0%| 0.0%
36}20|45|21| 2.7%| 1.2%| 0.7%| 0.4%| 0.3%| 0.2%| 0.1%| 0.0%| 0.0%
47|28{44f14] 2.1%X| 0.9%} 0.5%| 0.3%| 0.2%| 0.1%| 0.1%| 0.0%| 0.0%

average 4.3%| 1.9%| 1.1x| o0.7%x| 0.4X] 0.3%]| 0.2%| 0.1x]| 0.0%

Table 1. Grid density dependency on value of accuracy criterion

According to this table, if 25 check points {grid nodes) are chosen, the
average ellipsold axis difference is under 1% of the 100 points average el-
lipsoid axis, which 1s a sutisfying value. .

Optimum parameters can now be computed for various photo-pair design con-

figurations and same facade length L, and a system of k linear equations be
created: :

AX*v=b v (18)

The equations can be polynomials so x=I[ a, az...ap]'r where (p-1) is the po-

lynomial degree, and

- -1 =2 -
x¥ xP X 1
1 1 1
-1 -2
A= x: x: S 1
) (19)
-1 -2
xP xP X 1
k k k ]

where x is ¢, D/L, D/Hup, D/Hdown successively and p = [ b1 bz" .bk]-r where
b is B/D, ¢, ¢ and ¢ correspondingly. Solution is given by ‘

2= A" A (20)
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The organization of the computations can be as follows:

Choose a camera

Choose a facade length

Choose a camera height

Choose a tilt angle -

Optimize stereo-pairs for camera distances from facade between an upper
and a lower limlt (e.g. 50 - 4m). :

AR LN

For different tilt angles repeat steps 4,5. An example of polynomials
coefficients polynomials is given in Table 2. Such polynomials can be
obtained for any metric camera. To use them, compute first D/L and then from
polynomial f(D/L)=¢ with tilt w, compute ¢. With ¢ D/Hup and D/Hdown can be
computed. If Hup or Hdown is not valid, try another tilt w’ and compute
parameters with an interpolation method between two polynomials for tilt >w’
and tilt <0’ (e.g. the Aitken method, see F.Sheid, 1968, pp.54-55).

> ¢

2

0.0

7.0

14.0

21.0

19.530 - 24.630

31.936 - 45.600

33.914 - 46.000

236.785 - 46.000

o e wn =lele

2. 79414845D+00
2. 03330040D+00
1. 55740643D+00
~3. 20430517D-01
1. 81782832D-02

-3.60934973D+03
7.15867087D+03
-5.60553310D+03
2.19174098D+03
~4.27654877D+02
3. 32976245D+01

-1.61928250D+03
3.01922978D+03
-2.17761965D0+03
7.80615592D+02
~1.39045646D+02
9. 84259098D+00

-9. 54172069D+02
1.82925881D+03
-1.32886098D+03
4.79296368D+02
~8. 58265374D+01
6. 10229678D+00

> g

0.0

7.0

14.0

21.0

19.530 - 56.918

31.936 ~ 56.000

33.914 - 56.604

35.785 - 44.706

WO NONeWN =leCk

7.24124670D+01
-3..95191068D+01
-9..98126841D+00
4.22261183D+01
-3.71964164D+01
1.71733424D+01
- 4. 50860578D+00
6. 35791019D-01
-3. 74064655D-02

7.27514326D+01
-3.89289412D+01
-6.74695230D+00
'3.33042436D+01
-2.57664549D+01

8.89908594D+00
~1.19919649D+00

7.32018676D+01
-3.90816641D+01
-4.64073753D+00
3.02368374D+01
-2.35908117D+01
8.11533594D+00
~1.08478582D+00

7.66351417D+01
~5.55251885D+01
3.15018082D+01
~-1.01995504D+01
1.392039420+00

Table ‘1. Optimum polyromial coefficients for symmetrical photo-pair

Optimization example

The method presented applied in the
survey of a NE part of the byzantine
church of “Agios Dimitrios" in Thes~
saloniki, Greece. The specific part is
surrounded (see Fig.2) by other parts
of the monument so it offers an inter-
esting application ‘of the method.

Two photo pairs were taken: An
optimum (Q3-g4)and a near-"normal ca-
se” one (@]-02) 1n order to realize
the significance of the optimization

Fig.2 Photo-pairs !‘or-é"Aq.Dlnltrlos"
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procedure. Photo-pair @5-06 Distances in m [ D rverpronrz BTN Nov-s |

shown in Fig .2 is the opti- 2317 1488
mum with no limitations, taken 0§ 18
from polynomials. The facade %3 E%
was covered with 26 points (6 22 18
control and 20 check points) ég §§
which were measured with a oic 40 |
high accuracy 3-d topographic %% 283 |
network. The parameters of the 1819 Z.081
photo-pairs were: :%§ 2
16 16 2.38:
118 .44
01-02 : B=3. 19m, D=14. 32m, % 28
¢1— ¢z- 19729, wl_w =0 €%§ :
(near normal case) 1:0;35 2;“
03-04 : B=6.88m, D=14.32m, bR g
¢1—-¢2— 4,96 s . U1=w2=0 21:7: ;\E
(optimum case) T 4
A
The 26 points were measured : ,j$‘§%§  — .
on the phOtOts and the adJUSt- e 0.8 0.6 0.4 0.2 0.0 0.2 0.4 OTO 0.8 (cm)

ment procedure was carried out
using a bundle adjustment pro-
gram. A criterion used to compare the two photo-pairs was the distances’
differences between check points computed from the two solutions and those
computed from the topographic network, which are shown in Fig.3. It can be
easily seen that accuracy of 03-04 is almost twice as better from the 01-02
photo pair.

Fig.3 Comparison of two distances series

' Conclusions
It has been shown how interesting and useful photo-palr design optimiza-

tion can be for surveys of architectural monuments. The method presented
needs no extra photos, Just a better design of the photo-pair. In case of no
surrounding limitations, optimization polynomials can be used, which by-pass
the time-consuming general optimization method and so the optimization para-
meters can be computed on site.
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