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Abstract: 

Stratigraphic archaeological excavations demand high-resolution documentation techniques for 3D 

recording. Today, this is typically accomplished using total stations or terrestrial laser scanners. This paper 

demonstrates the potential of another technique that is low-cost and easy to execute. It takes advantage of 

software using Structure from Motion (SfM) algorithms, which are known for their ability to reconstruct 

camera pose and three-dimensional scene geometry (rendered as a sparse point cloud) from a series of 

overlapping photographs captured by a camera moving around the scene. When complemented by stereo 

matching algorithms, detailed 3D surface models can be built from such relatively oriented photo collections 

in a fully automated way. The absolute orientation of the model can be derived by the manual measurement 

of control points. The approach is extremely flexible and appropriate to deal with a wide variety of imagery, 

because this computer vision approach can also work with imagery resulting from a randomly moving 

camera (i.e. uncontrolled conditions) and calibrated optics are not a prerequisite. 

For a few years, these algorithms are embedded in several free and low-cost software packages. This paper 

will outline how such a program can be applied to map archaeological excavations in a very fast and 

uncomplicated way, using imagery shot with a standard compact digital camera (even if the images were not 

taken for this purpose). Archived data from previous excavations of VIAS-University of Vienna has been 

chosen and the derived digital surface models and orthophotos have been examined for their usefulness for 

archaeological applications. The absolute georeferencing of the resulting surface models was performed 

with the manual identification of fourteen control points. In order to express the positional accuracy of the 

generated 3D surface models, the NSSDA guidelines were applied. Simultaneously acquired terrestrial laser 

scanning data – which had been processed in our standard workflow – was used to independently check the 

results. The vertical accuracy of the surface models generated by SfM was found to be within 0.04 m at the 

95 % confidence interval, whereas several visual assessments proved a very high horizontal positional 

accuracy as well. 

 

1. INTRODUCTION 

The process of archaeological excavation aims at a complete description of a site’s unique stratification. In 

practice, each single deposit has to be uncovered, identified, documented and interpreted. Since this can only 

be done within a destructive process, high resolution documentation techniques for three-dimensional (3D) 

single-surface recording (as defined by [1,2]) are essential. Among the wide range of possible documentation 



 

 

techniques, total stations are typically used to document the outline and topography of top and bottom 

surfaces of single deposits. While total stations have become standard tools for documenting archaeological 

excavations in many countries, a detailed 3D single-surface recording is time consuming, cost-intensive, and 

provides only a general trend of the topography when dealing with rough surfaces. Alternatively, terrestrial 

laser scanning (TLS) has been proposed as a particularly sophisticated method to produce an accurate and 

detailed surface model [1,2,3]. Due to their high acquisition costs, for the time being they are rarely applied 

at archaeological excavations. Another option for fast 3D single-surface recording would be the adoption of 

a photogrammetrical workflow. Until recently, however, this alternative was not taken into consideration by 

many archaeologists, because photogrammetry again was considered to require high expertise, and expensive 

equipment (hard- and software).  

For a few years, the research field of computer vision, having close ties to photogrammetry, is developing 

innovative algorithms and techniques to obtain 3D information from photographs in a simple and flexible 

way without many prerequisites. These are embedded in several free and low-cost computer vision software 

packages, which allow an extremely flexible and appropriate approach to model surfaces from a wide variety 

of imagery. The paper will outline how such a program can be applied to map archaeological excavations in 

a very fast and uncomplicated way, using imagery shot with a standard compact digital camera. In that way, 

the photographic record of the individual surfaces can be used to create digital surface models and 

orthophotos. In order to assess the accuracy of the method, the 3D surface models are compared to surface 

models generated by simultaneously acquired TLS data. 

2. STRUCTURE FROM MOTION AND MULTI-VIEW STEREO 

A lot of tools and methods exist to obtain information about the geometry of 3D objects and scenes from 2D 

images. One of the possibilities is to use multiple image views from the same scene. Using photogrammetric 

techniques, an image point occurring in at least two views can be reconstructed in 3D. However, this can 

only be performed if the projection geometry is known, the latter expressing the camera pose (i.e. the 

external orientation parameters) and internal calibration parameters. A Structure from Motion (SfM [4]) 

approach allows to simultaneously compute both the relative projection geometry and a set of 3D points 

from a series of overlapping images captured by a camera moving around the scene [5,6]. By detecting a set 

of image features for every photograph and subsequently monitoring the position of those points throughout 

the multiple images, the locations of those feature points can be estimated and rendered as a sparse 3D point 

cloud that represents the geometry/structure of the scene in a local coordinate frame [6,7]. 

SfM algorithms are used in a wide variety of applications but were developed in the field of computer vision, 

often defined as the science that develops mathematical techniques to recover the three-dimensional shape 

and appearance of objects in imagery [6]. Recently, SfM received a great deal of attention due to two SfM 

implementations that are freely available: Bundler [8] and Microsoft’s Photosynth [9]. In this study, the 

commercial package PhotoScan (from AgiSoft LLC) is applied. Besides the aforementioned SfM approach, 

PhotoScan comes with a variety of dense multi-view stereo-matching algorithms (see [10] for an overview). 

As these reconstruction solutions operate on the pixel values [11,12], this additional step generates detailed 

meshed models from the initially calculated sparse point clouds, hence enabling proper handling of fine 

details present in the scenes. In a final step, the mesh can be textured. At this stage, the reconstructed 3D 

scene – which is still expressed in a local coordinate system – is by at least three manually measured Ground 

Control Points (GCPs) rotated and scaled in order to fit into the absolute coordinate frame. This means that 

the current approach just relies on one digital still camera, a computer, and a total station.  

3. ARCHAEOLOGICAL CASE STUDY 

In the past, similar approaches have been applied in digitizing archaeological sites (e.g. [13,14]). However, 

the SfM and multi-view stereo algorithms have been improved over time (see [12]). A rigorous comparison 

with simultaneously acquired TLS data was also not performed in this earlier work. To test the validity of the 

presented computer vision approach, a case-study was selected from an excavation in Schwarzenbach [15], a 

multi-period hillfort in the Federal State of Lower Austria, some 60 kilometres south of Vienna. 

Archaeological research has been going on since 1989 by VIAS-University of Vienna, including various 

multidisciplinary projects focusing on archaeological prospection, environmental archaeology, and 

experimental reconstruction of settlement structures. The site has also functioned as a key-excavation-area 

for the development of exhaustive digital documentation techniques for stratigraphic excavations [1,2] 



 

conducting GIS-based single surface documentation using a total station, digital photography, and TLS (to 

capture a detailed documentation of top and bottom surfaces and feature interfaces). 

3.1 Scene reconstruction 

Subject of this validity test is the top surface of the stratigraphic unit deposit SE608s. It has been documented 

in trench 6 during the 2008 excavation campaign and is part of a burnt Bronze Age rampart structure. This 

surface is particularly adequate because its topographic altitude variation is about 0.5 m and the presence of 

many, variously shaped, sized and oriented stones made the surface reconstruction challenging. Besides, the 

top surface of the deposit with its surroundings was scanned by a Riegl LMS-Z420i laser scanner. The 

scanner was placed about 7 m above the documented surface, yielding a scanning distance below 10 m. Two 

scanning positions were necessary to document the surface satisfyingly. 

 

Figure 1:One of the ten images (A) out of which PhotoScan calculated the camera poses (B), a sparse 3D 

point cloud (B) and a surface model (C). The latter can be georeferenced using GCPs (D) and textured (E). 

The imagery used in this reconstruction was shot in the summer of 2008 using a Sony Cybershot DSC-R1: a 

10 MP digital bridge camera featuring a Carl-Zeiss Vario-Sonnar 2.8-4.8/14.3-71.5 mm T* zoom. Of those 

images, all the Exif (EXchangeable Image File)-defined metadata tags were available. To enable orthophoto 

production, the images were shot as vertical as possible: the photographer was standing on a stepladder, 

handholding a 2 m long pole on top of which the camera was mounted, reaching a varying camera altitude of 

5 to 6 m above the surface. For this study, a small collection of ten images was used (see Figure 1A). It needs 

to be noted that none of those images was specifically acquired for the following approach, but the selected 

set of images nicely covers the area of interest. After importing all images into PhotoScan, feature points are 

automatically detected and described in all the source images. The approach is similar to the well-known 

SIFT (Scale Invariant Feature Transform) algorithm developed by David Lowe [16], since the features are 

very stable under viewpoint and lighting variations. Using these features, the SfM algorithm can relatively 

orient all the images and estimate the intrinsic camera parameters. The locations of the feature points result 

in a sparse 3D point cloud that roughly describes the scene in a local coordinate system (Figure 1B). 



 

 

In a second step, a dense surface reconstruction is computed. Because all pixels are utilized, this 

reconstruction step (which is based on a pair-wise depth map computation) enables proper handling of fine 

details present in the scenes and represents them as a 3D mesh (Figure 1C). Several algorithms are available 

to do this [10]. Three of them – which differ by the way the individual depth maps are merged into the final 

3D model – are chosen to compute a total of fifteen digital surface models (see Table 1). 

Table 1: – Most important processing parameters and all computed metrics for the fifteen DSMs. All 

computations were performed using an Intel
®
 Core™ i7-980X Processor, NVIDIA

®
‘s GeForce

®
 GTX 580 

and PhotoScan Professional 0.8.1 beta running on a Microsoft
®
 Windows™ 7 Ultimate 64-bit machine. 

 Reconstruction Comparison with 2 cm TLS grid 

DSM Method Quality Time (s) Max. - diff. (m) Max. + diff. (m) μ diff. (m) μ |diff.| (m) σ (m) RMSE (m) 

1 Height field Lowest 4 -0.247 1.086 -0.009 0.023 0.052 0.053 

2 Height field Low 7 -0.283 0.252 -0.012 0.017 0.021 0.024 

3 Height field Medium 34 -0.553 0.246 -0.012 0.015 0.021 0.025 

4 Height field High 236 -0.292 0.200 -0.012 0.015 0.021 0.024 

5 Height field Ultra high 1775 -0.290 0.326 -0.008 0.016 0.028 0.029 

6 Smooth Lowest 23 -0.198 0.242 -0.010 0.018 0.023 0.025 

7 Smooth Low 89 -0.263 0.252 -0.011 0.015 0.020 0.023 

8 Smooth Medium 398 -0.288 0.189 -0.012 0.015 0.020 0.023 

9 Smooth High 1857 -0.293 0.183 -0.012 0.015 0.020 0.023 

10 Smooth Ultra high 9407 -0.294 0.186 -0.011 0.015 0.020 0.023 

11 Exact Lowest 5 -0.214 0.399 -0.010 0.019 0.028 0.029 

12 Exact Low 13 -0.293 0.279 -0.011 0.015 0.020 0.023 

13 Exact Medium 74 -0.289 0.220 -0.011 0.014 0.019 0.022 

14 Exact High 545 -0.294 0.202 -0.011 0.014 0.019 0.022 

15 Exact Ultra high 4524 -0.291 0.176 -0.011 0.014 0.018 0.021 

In a third stage, every DSM is georeferenced by importing the coordinates of fourteen GCPs and indicating 

their position on the photographs (Figure 1D). Afterwards, a seven parameter similarity transformation 

converts the surface model into an absolute coordinate system. The maximum horizontal error reported 

between the computed coordinates and the GCP values acquired by total station was 7 mm. To enable an 

identical absolute georeferencing for every DSM, DSM 2 to 15 were computed using the images and GCPs 

embedded in the project file from DSM 1. By varying the reconstruction parameters, PhotoScan computed a 

new DSM – which was separately stored – while maintaining the GCPs position relative to each individual 

photograph. Although it is not necessary for the orthophoto or DSM output, the 3D models can be textured to 

get a more pleasing representation (Figure 1E). Finally, every DSM was exported as an ASCII file. 

3.2 Spatial accuracy and precision assessment 

Notwithstanding the 3D models are very easy to generate, it is prudent to evaluate their accuracy. Therefore, 

all fifteen DSMs were compared to TLS data, the latter being acquired by Riegl´s LMS-Z420i. The two 

scanning positions were absolutely georeferenced with Riegl Reflectors (zylinders). The position of the 

reflectors was measured with a total station and yielded an average absolute georeferencing RMSE of the 

TLS data of 0.011m. Finally, RiSCAN PRO 1.6.1 was applied to clean and filter (octree) the TLS data to 

reduce the noise and smooth the point cloud to a final point spacing of 1.7 cm (this is a standard workflow 

that proved to be useful for excavations). The georeferenced 3D point cloud was loaded into ESRI
®
’s 

ArcGIS
®
 10 together with the fifteen DSMs. Those DSM were exported from PhotoScan using a 2 cm grid 

spacing since previous research already indicated that large cell sizes can result in quite significant accuracy 

losses when dealing with complex terrains [17]. Additionally, 2 cm seemed a feasible grid spacing 

considering the density of the used laser point cloud. For the accuracy assessment, a rectangular test area (4 

by 4 m) was chosen in which the complete topographic surface variation was present. It was also verified 

that the point spacing was still 1.7 cm. In this area, all fifteen DSMs were sampled for their altitude value on 

the > 50,000 TLS point locations. As the TLS measurements were the basis for the comparison, they were 

handled as the true values. By treating the values of the DSMs as observed values, several metrics could be 

extracted from this dataset (Table 1): a maximum positive and negative altitude difference, the mean (μ) 

difference, the mean of all absolute altitude differences, the standard deviation (σ) and the Root-Mean-



 

Square Error (RMSE). Since absolute accuracy defines how well the observed value corresponds to the true 

value, RMSE is often used to assess the horizontal and vertical positional accuracy. Because the standard 

deviation describes the amount of variation that occurs between all the successive measurements, this metric 

can be applied to indicate the precision (often called relative accuracy in the field of DSM). It should be 

noted that in this case, both metrics only provide information on the vertical component of the computed 

DSMs. 

 

Figure 2: (A) Difference grid between the TLS data and PhotoScan DSM 10; (B) The profiles of the paths 

indicated in (A); (C) The differences between the TLS and PhotoScan data along profile 1 and profile 2. 

To incorporate all possible uncertainties in the computed dataset (including those introduced by the GCPs), 

the final vertical accuracy values are expressed at the 95% confidence interval using the National Standard 



 

 

for Spatial Data Accuracy (NSSDA): 1.96 RMSEz [18]. This shows that the most accurate surface (DEM 15) 

has an NSSDA vertical accuracy of 0.041 m, while a vertical accuracy of 0.045m is retrieved for DSM 10. 

These figures mean that 95% of all the computed 3D points have an error with respect to the true ground 

position that is smaller or equal to the stated accuracy metric. Regarding the fact that both the TLS and 

PhotoScan georeferencing is accurate to within about 1 cm and, additionally, the TLS data is characterised 

by a noise of ± 1-2 cm in the < 10 m range [19,20], the calculated RMSE is more or less falling in the typical 

random error range. Therefore, this test allows one to assume that the PhotoScan result has more or less the 

same overall accuracy as the TLS data set.  

Additionally, a visual assessment of both vertical and horizontal positional accuracy is provided in Figure 

2A, which displays a TLS-versus-PhotoScan difference grid and noticeably reveals the biggest differences 

(see also Table 1) to be situated along some sharp edges. These edge effects are in accordance to what is 

known from previous TLS research [19]. Two profiles drawn along a big stone (Figure 2C) illustrate very 

clearly that the TLS generated a variety of wrong points in the vicinity of edges, whereas the computer vision 

approach was able to retrieve these sharp forms much better (see also the difference profiles plotted in Figure 

2C). In the flatter areas, the profiles also expose the lower noise of the PhotoScan DSM. Even when sub-

centimetre accuracy is generally not of much importance in excavation recording, PhotoScan proves its 

capabilities – at least in this test area – in detecting and modelling very small details. 

4. DISCUSSION AND PROSPECTS 

During the last years, the demand for accurate and fast generation of 3D surface models has been increasing 

in several domains. Archaeology was no exception to this. However, since archaeologists often have to deal 

with cost constraints, using a laser scanner is not always feasible. In the previous section, it was clearly 

shown that one can acquire very accurate 3D information about archaeological interfaces using state-of-the-

art computer vision approaches. It again needs to be stressed that the imagery using in this comparison was 

not specifically acquired for this type of approach. The amount of image overlap and the camera positions 

were not at all optimised for a digital surface reconstruction. Still, the accuracy obtained can be considered 

sufficient for archaeological work. Besides, the workflow is very straightforward, only little familiarity with 

photogrammetry or computer vision is assumed and no expensive hard- or software is involved for the data 

acquisition. However, generating high-quality models from large datasets does require adequate computing 

resources. Finally, also old imagery can be reprocessed into accurate 3D surfaces and orthophotographs. 

To illustrate this, our approach was applied onto a set of six 1.6 MP handheld oblique images (Figure 3A). 

Those were shot more than ten years ago using a Canon digital compact camera (PowerShot Pro70) and 

represent a Late Neolithic pit (feature interface SE30i) found on the multi-period open settlement site of Platt 

in Lower Austria, 70 km north of Vienna [20]. Apart from the pixel values, no other data were preserved, 

meaning that PhotoScan had no initial focal length values to start from. As in the previous case study, four 

total station-measured GCPs were visible in each image, as well as some in-situ measured breaklines and 

surface points. As Figure 3B indicates, the 3D model retrieved from these archived images is still very useful 

and more than sufficient for visualisation of the feature interface. Only small parts of the interface are 

lacking, since the bottom was not everywhere equally well covered by digital photographs. Notwithstanding, 

enough digital information was initially captured to allow the production of an accurate orthophotograph. 

Figure 3C shows the rectified photograph that was originally calculated from one of the oblique images 

using a simple projective transformation. When overlaid with the total station breakline measurements, one 

can see the big deviations due to topographic displacements and lens distortion. Comparing this result with 

the output produced by PhotoScan more than a decade later (Figure 3D) again highlights the potential of the 

latter approach. 

These results should not be interpreted as a statement that TLS should be replaced by image-based modelling 

approaches in excavation work. First of all, we were able to generate similar results with both techniques 

which are usable for archaeological interpretation. Secondly, TLS has proven its reliability over years. 

Although the current examples prove SfM algorithms to be a very valid alternative for 3D single-surface 

recording, it has to be stressed that this approach is obviously not perfect. When dealing with very large 

photo collections, highly oblique images or photographs that have a dissimilar appearance, erroneous 

alignment of the imagery can occur. Besides, it should be clear that high quality reconstructions with large 

image files are very resource intensive. A multicore processor, a decent amount of RAM (minimum 8 GB), a 

64-bit operating system and – most importantly - a high-end graphical card are minimum requirements for 



 

successful processing. Table 1 also gives a short overview of the processing times recorded during the 

reconstruction of the aforementioned DSMs. Notice how the stepwise increase of output quality comes with 

a serious time penalty. Luckily, the metrics of Table 1 show that even lower-quality DSMs were more than 

sufficient to digitally represent the uncovered surface for archaeological documentation. 

 

Figure 3: (A) One of the Platt pit mages; (B) The surface and camera poses recovered by PhotoScan; (C) a 

rectified pit image and the PhotoScan (PS) orthophoto, both overlaid with measured breaklines (see text). 

5. CONCLUSION 

In this paper, the goal was to present an inexpensive approach to fast and accurate 3D surface recording. The 

method is mainly based on several computer vision techniques and is very straightforward to execute and 

integrate in the general excavation methodology. Moreover, it also offers the enormous advantage that there 

are just standard photographic recording prerequisites. Apart from a sufficient amount of sharp images 

covering the scene to be reconstructed and at least three GCPs to transform the reconstruction into an 

absolute coordinate frame, no other information is needed (although Exif metadata information – e.g. even 

GPC coordinates – can be utilized). Besides, only a minimal technical knowledge and user interaction are 

required. Finally, this approach can also work in total absence of any information about the instrument the 

imagery was acquired with. To illustrate this, archived data from previous excavations of VIAS-University 

of Vienna have been chosen to model feature interfaces after which they were examined for their usefulness 

in terms of archaeological visualisation and extraction of metric information. To evaluate their geometric 

accuracy, the 3D models have been compared to simultaneously acquired total station and TLS data. 

Although the imagery had been shot before the development of this approach, the DSMs generated by 

PhotoScan showed only small derivations from those produced by our standard TLS-workflow and can 

therefore be considered as useful for our excavation purposes. 

While it needs to be stressed that obtaining millimetre accuracy is not an archaeological aim in itself and it 

will – for most archaeological excavations – not deeply change our fundamental understanding of the past 

when compared to more conventional registration methods, archaeologists should always strive to document 

an excavation as detailed and accurately as reasonably possible, since it is a one-time and very destructive 

event. The lack of financial means to apply an on-site laser scanner or the technical expertise required to use 

photogrammetrical approaches have often been considered the main hindrances in reaching appropriate 3D 

excavation documentation, even these days. Thanks to the world-wide availability of digital still cameras and 

the integration of state-of-the-art computer vision and photogrammetry algorithms in a user-friendly software 

package, all the tools are now available to overcome the previous constraints and establish a straightforward, 

low-cost workflow for excavation recording that can be executed by technically low-trained archaeologists. 

Even though future investigations under different controlled conditions are necessary to assess the image-

based modelling more thoroughly and provide accuracy details that could not be mentioned in this paper, the 

presented case-studies already showed that both image-based and TLS approaches have their drawbacks and 



 

 

advantages. However, they can both be considered valid techniques for fast and accurate 3D single-surface 

recording. 
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